Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer cells break free from tumors

10.10.2012
New MIT study identifies adhesion molecules key to cancer’s spread through the body.

Although tumor metastasis causes about 90 percent of cancer deaths, the exact mechanism that allows cancer cells to spread from one part of the body to another is not well understood. One key question is how tumor cells detach from the structural elements that normally hold tissues in place, then reattach themselves in a new site.


A microscopic image of cancer cells adhering to a spot coated with molecules found in the extracellular matrix.

Image: Nathan Reticker-Flynn

A new study from MIT cancer researchers reveals some of the cellular adhesion molecules that are critical to this process. The findings, published Oct. 9 in Nature Communications, offer potential new cancer drug targets, says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, and leader of the research team.

“As cancer cells become more metastatic, there can be a loss of adhesion to normal tissue structures. Then, as they become more aggressive, they gain the ability to stick to, and grow on, molecules that are not normally found in healthy tissues but are found in sites of tumor metastases,” says Bhatia, who is also a member of the David H. Koch Institute for Integrative Cancer Research at MIT. “If we can prevent them from growing at these new sites, we may be able to interfere with metastatic disease.”

Lead author of the paper is Nathan Reticker-Flynn, a PhD student in Bhatia’s lab. Other authors are former students David Braga Malta and Mary Xu, postdocs Monte Winslow and John Lamar, and research scientist Gregory Underhill. In addition, Richard Hynes, the D.K. Ludwig Professor of Biology and a member of the Koch Institute, and Tyler Jacks, director of the Koch Institute, are contributing authors on this study.

Losing and gaining adhesion

Cells inside the human body are usually tethered to a structural support system known as the extracellular matrix, which also helps regulate cellular behavior. Proteins called integrins, located on cell surfaces, form the anchors that hold the cells in place. When cancer cells metastasize, these anchors let go.

In this study, the researchers compared the adhesion properties of four types of cancer cells, taken from mice genetically engineered to develop lung cancer: primary lung tumors that later metastasized, primary lung tumors that did not metastasize, metastatic tumors that migrated from the lungs to nearby lymph nodes, and metastatic tumors that travelled to more distant locations such as the liver.

Building on a system they first described in 2005, the scientists developed technology allowing them to expose each type of cell to about 800 different pairs of molecules found in the extracellular matrix. After depositing cells onto a microscope slide in tiny spots — each containing two different extracellular matrix proteins — the researchers could measure how well cells from each tumor type bound to the protein pairs.

The new technology is a huge step forward from current experimental methods for studying cellular adhesion, which are limited to much smaller numbers of cells and adhesion molecules, says Jan Pilch, an assistant professor at the University of Pittsburgh School of Medicine.

“They’ve not only scaled this up dramatically, they’re able to study the adhesion proteins in combination, which allows them to identify adhesion synergies,” says Pilch, who was not part of the research team.

The researchers were surprised to find that adhesion tendencies of metastatic cells from different primary tumors were much more similar to each other than to those of the primary tumor from which they originally came. One pair of extracellular matrix molecules that metastatic tumors stuck to especially well was fibronectin and galectin-3, both made of proteins that contain or bind to sugars.

Although metastatic tumor cells share adhesion traits, they may take different pathways to get there, Reticker-Flynn says. Some tumor cells alter the combination of integrins that they express, while others vary the types of sugars found on their surfaces. All of these changes can result in higher or lower affinities for certain molecules found in the extracellular matrix of different tissues.

In an analysis of human tumor samples, both primary and metastatic, the researchers saw similar patterns. Specifically, they found that the more aggressive the metastasis, the more galectin-3 was present.

Previous studies have suggested that tumors pave the way for metastasis by secreting molecules that promote the development of environments hospitable to new cancer growth. Accumulation of galectin-3 and other molecules that help tumor cells colonize new sites may be part of this process, the researchers say.

“There’s a lot of evidence to suggest that a hospitable niche for the tumor cells is being established prior to the cells even arriving and establishing a home there,” Reticker-Flynn says.

Preventing cancer spread

The findings offer potential new ways to block metastasis by focusing on a specific protein-protein or protein-sugar interaction, rather than a particular gene mutation, Reticker-Flynn says. “If those changes do confer a lot of metastatic potential, we can start thinking about how you target that interaction specifically,” he says.

The researchers tested this approach by genetically knocking down the amount of an integrin found on the surface of cancer cells, which they had identified as interacting with fibronectin and galectin-3. In those mice, tumor spread was reduced. Other possible therapeutic approaches include blocking binding sites on fibronectin and galectin-3 with antibodies, so tumor cells can’t latch onto them.

To help with efforts to develop such drugs, the research team is now trying to figure out the details of tumor cells’ interactions with galectin-3 and is developing new candidate therapeutics aimed at inhibiting those interactions.

The research was funded by Stand Up to Cancer, the Koch Institute Circulating Tumor Cell Project, the Harvard Stem Cell Institute, the National Cancer Institute, the Howard Hughes Medical Institute and the Ludwig Center at MIT.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/newsoffice/2012/how-cancer-cells-break-free-from-tumors-1009.html

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>