Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech neuroscientists discover brain area responsible for fear of losing money

09.02.2010
Finding offers neuroscientists insight into economic behavior

Neuroscientists at the California Institute of Technology (Caltech) and their colleagues have tied the human aversion to losing money to a specific structure in the brain–the amygdala.

The finding, described in the latest online issue of the journal Proceedings of the National Academy of Sciences (PNAS), offers insight into economic behavior, and also into the role of the brain's amygdalae, two almond-shaped clusters of tissue located in the medial temporal lobes. The amygdala registers rapid emotional reactions and is implicated in depression, anxiety, and autism.

The research team that made these findings consists of Benedetto de Martino, a Caltech visiting researcher from University College London and first author on the study; Colin Camerer, the Robert Kirby Professor of Behavioral Economics; and Ralph Adolphs, the Bren Professor of Psychology and Neuroscience and professor of biology.

The study involved an examination of two patients whose amygdalae had been destroyed due to a very rare genetic disease; those patients, along with individuals without amygdala damage, volunteered to participate in a simple "experimental economics task."

In the task, the subjects were asked whether or not they were willing to accept a variety of monetary gambles, each with a different possible gain or loss. For example, participants were asked whether they would take a gamble in which there was an equal probability they'd win $20 or lose $5 (a risk most people will choose to accept) and if they would take a 50/50 gamble to win $20 or lose $20 (a risk most people will not choose to accept). They were also asked if they'd take a 50/50 gamble on winning $20 or losing $15—a risk most people will reject, "even though the net expected outcome is positive," Adolphs says.

Both of the amygdala-damaged patients took risky gambles much more often than subjects of the same age and education who had no amygdala damage. In fact, the first group showed no aversion to monetary loss whatsoever, in sharp contrast to the control subjects.

"Monetary-loss aversion has been studied in behavioral economics for some time, but this is the first time that patients have been reported who lack it entirely," says de Martino.

"We think this shows that the amygdala is critical for triggering a sense of caution toward making gambles in which you might lose," explains Camerer. This function of the amygdala, he says, may be similar to its role in fear and anxiety.

"Loss aversion has been observed in many economic studies, from monkeys trading tokens for food to people on high-stakes game shows," he adds, "but this is the first clear evidence of a special brain structure that is responsible for fear of such losses."

The work in the paper, "Amygdala damage eliminates monetary loss aversion," was supported by the Gordon and Betty Moore Foundation, the Human Frontier Science Program, the Wellcome Trust, the National Institutes of Health, the Simons Foundation, and a Global Center of Excellence grant from the Japanese government.

Visit the Caltech Media Relations website at http://media.caltech.edu

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Amygdala Caltech Science TV brain's amygdalae genetic disease

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>