Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech neuroscientists discover brain area responsible for fear of losing money

09.02.2010
Finding offers neuroscientists insight into economic behavior

Neuroscientists at the California Institute of Technology (Caltech) and their colleagues have tied the human aversion to losing money to a specific structure in the brain–the amygdala.

The finding, described in the latest online issue of the journal Proceedings of the National Academy of Sciences (PNAS), offers insight into economic behavior, and also into the role of the brain's amygdalae, two almond-shaped clusters of tissue located in the medial temporal lobes. The amygdala registers rapid emotional reactions and is implicated in depression, anxiety, and autism.

The research team that made these findings consists of Benedetto de Martino, a Caltech visiting researcher from University College London and first author on the study; Colin Camerer, the Robert Kirby Professor of Behavioral Economics; and Ralph Adolphs, the Bren Professor of Psychology and Neuroscience and professor of biology.

The study involved an examination of two patients whose amygdalae had been destroyed due to a very rare genetic disease; those patients, along with individuals without amygdala damage, volunteered to participate in a simple "experimental economics task."

In the task, the subjects were asked whether or not they were willing to accept a variety of monetary gambles, each with a different possible gain or loss. For example, participants were asked whether they would take a gamble in which there was an equal probability they'd win $20 or lose $5 (a risk most people will choose to accept) and if they would take a 50/50 gamble to win $20 or lose $20 (a risk most people will not choose to accept). They were also asked if they'd take a 50/50 gamble on winning $20 or losing $15—a risk most people will reject, "even though the net expected outcome is positive," Adolphs says.

Both of the amygdala-damaged patients took risky gambles much more often than subjects of the same age and education who had no amygdala damage. In fact, the first group showed no aversion to monetary loss whatsoever, in sharp contrast to the control subjects.

"Monetary-loss aversion has been studied in behavioral economics for some time, but this is the first time that patients have been reported who lack it entirely," says de Martino.

"We think this shows that the amygdala is critical for triggering a sense of caution toward making gambles in which you might lose," explains Camerer. This function of the amygdala, he says, may be similar to its role in fear and anxiety.

"Loss aversion has been observed in many economic studies, from monkeys trading tokens for food to people on high-stakes game shows," he adds, "but this is the first clear evidence of a special brain structure that is responsible for fear of such losses."

The work in the paper, "Amygdala damage eliminates monetary loss aversion," was supported by the Gordon and Betty Moore Foundation, the Human Frontier Science Program, the Wellcome Trust, the National Institutes of Health, the Simons Foundation, and a Global Center of Excellence grant from the Japanese government.

Visit the Caltech Media Relations website at http://media.caltech.edu

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Amygdala Caltech Science TV brain's amygdalae genetic disease

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>