Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why caffeine can reduce fertility in women

26.05.2011
Caffeine reduces muscle activity in the Fallopian tubes that carry eggs from a woman's ovaries to her womb. "Our experiments were conducted in mice, but this finding goes a long way towards explaining why drinking caffeinated drinks can reduce a woman's chance of becoming pregnant," says Professor Sean Ward from the University of Nevada School of Medicine, Reno, USA. Ward's study is published today in the British Journal of Pharmacology.

Human eggs are microscopically small, but need to travel to a woman's womb if she is going to have a successful pregnancy. Although the process is essential for a successful pregnancy, scientists know little about how eggs move through the muscular Fallopian tubes. It was generally assumed that tiny hair-like projections, called cilia, in the lining of the tubes, waft eggs along assisted by muscle contractions in the tube walls.

By studying tubes from mice, Professor Ward and his team discovered that caffeine stops the actions of specialised pacemaker cells in the wall of the tubes. These cells coordinate tube contractions so that when they are inhibited, eggs can't move down the tubes. In fact these muscle contractions play a bigger role than the beating cilia in moving the egg towards the womb. "This provides an intriguing explanation as to why women with high caffeine consumption often take longer to conceive than women who do not consume caffeine," says Professor Ward.

Discovering the link between caffeine consumption and reduced fertility has benefits. "As well as potentially helping women who are finding it difficult to get pregnant, a better understanding of the way Fallopian tubes work will help doctors treat pelvic inflammation and sexually-transmitted disease more successfully," says Professor Ward. It could also increase our understanding of what causes ectopic pregnancy, an extremely painful and potentially life-threatening situation in which embryos get stuck and start developing inside a woman's Fallopian tube.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>