Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caffeine consumption slows down brain development

24.09.2013
Humans and other mammals show particularly intensive sleeping patterns during puberty. The brain also matures fastest in this period. But when pubescent rats are administered caffeine, the maturing processes in their brains are delayed. This is the result of a study supported by the Swiss National Science Foundation (SNSF).

Children’s and young adults’ average caffeine consumption has increased by more than 70 per cent over the past 30 years, and an end to this rise is not in sight: the drinks industry is posting its fastest-growing sales in the segment of caffeine-laden energy drinks. Not everybody is pleased about this development. Some people are worried about possible health risks caused in young consumers by the pick-me-up.

Researchers led by Reto Huber of the University Children’s Hospital Zurich are now adding new arguments to the debate. In their recently published study conducted on rats (*), the conclusions call for caution: in pubescent rodents, caffeine intake equating to three to four cups of coffee per day in humans results in reduced deep sleep and a delayed brain development.

Peak level during puberty

Both in humans and in rats, the duration and intensity of deep sleep as well as the number of synapses or connections in the brain increase during childhood, reaching their highest level during puberty and dropping again in adult age. “The brain of children is extremely plastic due to the many connections,” says Huber. When the brain then begins to mature during puberty, a large number of these connections are lost. “This optimisation presumably occurs during deep sleep. Key synapses extend, others are reduced; this makes the network more efficient and the brain more powerful,” says Huber.

Timid instead of curious

Huber’s group of researchers administered moderate quantities of caffeine to 30-day-old rats over five days and measured the electrical current generated by their brains. The deep sleep periods, which are characterised by slow waves, were reduced from day 31 until day 42, i.e. well beyond the end of administering caffeine. Compared to the rats being given pure drinking water, the researchers found far more neural connections in the brains of the caffeine-drinking animals at the end of the study. The slower maturing process in the brain also had an impact on behaviour: rats normally become more curious with age, but the rats consuming caffeine remained timid and cautious.

The brain goes through a delicate maturing phase in puberty, during which many mental diseases can break out. And even if the rat brain differs clearly from that of humans, the many parallels in how the brains develop raise the question as to whether children’s and young adults’ caffeine intake really is harmless or whether it might be wiser to abstain from consuming the pick-me-up. “There is still need for research in this area,” says Huber.

(*) Nadja Olini, Salomé Kurth and Reto Huber (2013). The Effects of Caffeine on Sleep and Maturational Markers in the Rat. PLoS ONE 8: e72539. doi:10.1371/journal.pone.0072539

Contact
Dr Reto Huber
University Children’s Hospital Zurich
Steinwiesstrasse 75
CH-8032 Zurich
Phone: +41 44 266 81 60
E-mail: reto.huber@kispi.uzh.ch

Abteilung Kommunikation | idw
Further information:
http://www.snsf.ch

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>