Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cadmium Selenide Quantum Dots Degrade in Soil, Releasing Their Toxic Guts, Study Finds

19.07.2011
Quantum dots made from cadmium and selenium degrade in soil, unleashing toxic cadmium and selenium ions into their surroundings, a University at Buffalo study has found.

The research, accepted for publication in the journal Environmental Science and Technology, demonstrates the importance of learning more about how quantum dots -- and other nanomaterials -- interact with the environment after disposal, said Diana Aga, the chemistry professor who led the study.

Quantum dots are semiconductor nanocrystals with diameters of about 2 to 100 nanometers. Though quantum dots are not yet commonly used in consumer products, scientists are exploring the particles' applications in technologies ranging from solar panels to biomedical imaging.

"Quantum dots are not yet used widely, but they have a lot of potential and we can anticipate that the use of this nanomaterial will increase," said Aga, who presented the findings in late June at a National Science Foundation-funded workshop on nanomaterials in the environment. "We can also anticipate that their occurrence in the environment will also increase, and we need to be proactive and learn more about whether these materials will be a problem when they enter the environment."

"We can conclude from our research that there is potential for some negative impacts, since the quantum dots biodegrade. But there is also a possibility to modify the chemistry, the surface of the nanomaterials, to prevent degradation in the future," she said.

Aga's research into the afterlife of quantum dots is funded by a $400,000 Environmental Protection Agency grant to investigate the environmental transport, biodegradation and bioaccumulation of quantum dots and oxide nanoparticles.

Her collaborators on the new study in Environmental Science and Technology include PhD student Divina Navarro, Assistant Professor Sarbajit Banerjee and Associate Professor David Watson, all of the UB Department of Chemistry.

Working in the laboratory, the team tested two kinds of quantum dots: Cadmium selenide quantum dots, and cadmium-selenide quantum dots with a protective, zinc-sulfide shell. Though the shelled quantum dots are known in scientific literature to be more stable, Aga's team found that both varieties of quantum dot leaked toxic elements within 15 days of entering soil.

In a related experiment designed to predict the likelihood that discarded quantum dots would leach into groundwater, the scientists placed a sample of each type of quantum dot at the top of a narrow soil column. The researchers then added calcium chloride solution to mimic rain.

What they observed: Almost all the cadmium and selenium detected in each of the two columns -- more than 90 percent of that in the column holding unshelled quantum dots, and more than 70 percent of that in the column holding shelled quantum dots - -remained in the top 1.5 centimeters of the soil.

But how the nanomaterials moved depended on what else was in the soil. When the team added ethylenediaminetetraacetic acid (EDTA) to test columns instead of calcium chloride, the quantum dots traveled through the soil more quickly. EDTA is a chelating agent, similar to the citric acid often found in soaps and laundry detergents.

The data suggest that under normal circumstances, quantum dots resting in top soil are unlikely to burrow their way down into underground water tables, unless chelating agents such as EDTA are introduced on purpose, or naturally-occurring organic acids (such as plant exudates) are present.

Aga said that even if the quantum dots remain in top soil, without contaminating underground aquifers, the particles' degradation still poses a risk to the environment.

In a separate study submitted for publication in a different journal, she and her colleagues tested the reaction of Arabidopsis plants to quantum dots with zinc sulfide shells. The team found that while the plants did not absorb the nanocrystals into their root systems, the plants still displayed a typical phytotoxic reaction upon coming into contact with the foreign matter; in other words, the plants treated the quantum dots as a poison.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>