Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM/VA researchers uncover gender differences in the effects of long-term alcoholism

10.08.2012
Researchers from Boston University School of Medicine (BUSM) and Veterans Affairs (VA) Boston Healthcare System have demonstrated that the effects on white matter brain volume from long-term alcohol abuse are different for men and women. The study, which is published online in Alcoholism: Clinical and Experimental Research, also suggests that with abstinence, women recover their white matter brain volume more quickly than men.

The study was led by Susan Mosher Ruiz, PhD, postdoctoral research scientist in the Laboratory for Neuropsychology at BUSM and research scientist at the VA Boston Healthcare System, and Marlene Oscar Berman, PhD, professor of psychiatry, neurology and anatomy and neurobiology at BUSM and research career scientist at the VA Boston Healthcare System.

In previous research, alcoholism has been associated with white matter pathology. White matter forms the connections between neurons, allowing communication between different areas of the brain. While previous neuroimaging studies have shown an association between alcoholism and white matter reduction, this study furthered the understanding of this effect by examining gender differences and utilizing a novel region-of-interest approach.

The research team employed structural magnetic resonance imaging (MRI) to determine the effects of drinking history and gender on white matter volume. They examined brain images from 42 abstinent alcoholic men and women who drank heavily for more than five years and 42 nonalcoholic control men and women. Looking at the correlation between years of alcohol abuse and white matter volume, the researchers found that a greater number of years of alcohol abuse was associated with smaller white matter volumes in the abstinent alcoholic men and women. In the men, the decrease was observed in the corpus callosum while in women, this effect was observed in cortical white matter regions.

"We believe that many of the cognitive and emotional deficits observed in people with chronic alcoholism, including memory problems and flat affect, are related to disconnections that result from a loss of white matter," said Mosher Ruiz.

The researchers also examined if the average number of drinks consumed per day was associated with reduced white matter volume. They found that the number of daily drinks did have a strong impact on alcoholic women, and the volume loss was one and a half to two percent for each additional daily drink. Additionally, there was an eight to 10 percent increase in the size of the brain ventricles, which are areas filled with cerebrospinal fluid (CSF) that play a protective role in the brain. When white matter dies, CSF produced in the ventricles fills the ventricular space.

Recovery of white matter brain volume also was examined. They found that, in men, the corpus callosum recovered at a rate of one percent per year for each additional year of abstinence. For people who abstained less than a year, the researchers found evidence of increased white matter volume and decreased ventricular volume in women, but not at all in men. However, for people in recovery for more than a year, those signs of recovery disappeared in women and became apparent in men.

"These findings preliminarily suggest that restoration and recovery of the brain's white matter among alcoholics occurs later in abstinence for men than for women," said Mosher Ruiz. "We hope that additional research in this area can help lead to improved treatment methods that include educating both alcoholic men and women about the harmful effects of excessive drinking and the potential for recovery with sustained abstinence."

This research was supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award numbers R01-AA07112 and K05-AA00219, the US Department of Veterans Affairs Medical Research Service and the Center for Functional Neuroimaging Technologies (award number P41RR14075).

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: Affairs Alcoholism BUSM BUSM/VA Boston Healthcare Veterans alcohol abuse corpus callosum memory problem

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>