Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM study reveals potential target to better treat, cure anxiety disorders

06.03.2013
Researchers at Boston University School of Medicine (BUSM) have, for the first time, identified a specific group of cells in the brainstem whose activation during rapid eye movement (REM) sleep is critical for the regulation of emotional memory processing.

The findings, published in the Journal of Neuroscience, could help lead to the development of effective behavioral and pharmacological therapies to treat anxiety disorders, such as post-traumatic stress disorder, phobias and panic attacks.

There are two main stages of sleep – REM and non-REM – and both are necessary to maintain health and to regulate multiple memory systems, including emotional memory. During non-REM sleep, the body repairs tissue, regenerates cells and improves the function of the body's immune system. During REM sleep, the brain becomes more active and the muscles of the body become paralyzed. Additionally, dreaming generally occurs during REM sleep, as well as physiological events including saccadic eye movements and rapid fluctuations of respiration, heart rate and body temperature. One particular physiological event, which is a hallmark sign of REM sleep, is the appearance of phasic pontine waves (P-waves). The P-wave is a unique brain wave generated by the activation of a group of glutamatergic cells in a specific region within the brainstem called the pons.

Memories of fearful experiences can lead to enduring alterations in emotion and behavior and sleep plays a natural emotional regulatory role after stressful and traumatic events. Persistence of sleep disturbances, particularly of REM sleep, is predictive of developing symptoms of anxiety disorders. A core symptom of these disorders frequently reported by patients is the persistence of fear-provoking memories that they are unable to extinguish. Presently, exposure therapy, which involves controlled re-exposure to the original fearful experience, is considered one of the most effective evidence-based treatments for anxiety disorders. Exposure therapy produces a new memory, called an extinction memory, to coexist and compete with the fearful memory when the fearful cue/context is re-encountered.

The strength of the extinction memory determines the efficacy of exposure therapy. A demonstrated prerequisite for the successful development of an extinction memory is adequate sleep, particularly REM sleep, after exposure therapy. However, adequate or increased sleep alone does not universally guarantee its therapeutic efficacy.

"Given the inconsistency and unpredictability of exposure therapy, we are working to identify which process(es) during REM sleep dictate the success or failure of exposure therapy," said Subimal Datta, PhD, director and principle investigator at the Laboratory of Sleep and Cognitive Neuroscience at BUSM who served as the study's lead author.

The researchers used contextual fear extinction training, which works to turn off the conditioned fear, to study which brain mechanisms play a role in the success of exposure therapy. The study results showed that fear extinction training increased REM sleep. Surprisingly, however, only 57 percent of subjects retained fear extinction memory, meaning that they did not experience the fear, after 24 hours. There was a tremendous increase of phasic P-wave activity among those subjects. In 43 percent of subjects, however, the wave activity was absent and they failed to retain fear extinction memory, meaning that they re-experienced fear.

"The study results provide direct evidence that the activation of phasic P-wave activity within the brainstem, in conjunction with exposure therapy, is critical for the development of long-term retention of fear extinction memory," said Datta, who also is a professor of psychiatry and neurology at BUSM. In addition, the study indicates the important role that the brainstem plays in regulating emotional memory.

Future research will explore how to activate this mechanism in order to help facilitate the development of new potential pharmacological treatments that will complement exposure therapy to better treat anxiety and other psychological disorders.

According to the National Institute of Mental Health, anxiety disorders affect approximately 40 million American adults each year. While anxiety can sometimes be a normal and beneficial reaction to stress, some people experience excessive anxiety that they are unable to control, which can negatively impact their day to day life.

Research included in this study was supported in part by the National Institutes of Health's National Institute of Mental Health under grant award number MH 59839 (PI: Datta) and the National Institute of Neurological Disorders and Stroke under grant award number NS 34004 (PI: Datta).

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>