Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM study investigates genetic variants' role in increasing Parkinson's disease risk

08.10.2012
Boston University School of Medicine (BUSM) investigators have led the first genome-wide evaluation of genetic variants associated with Parkinson's disease (PD).

The study, which is published online in PLOS ONE, points to the involvement of specific genes and alterations in their expression as influencing the risk for developing PD.

Jeanne Latourelle, DSc, assistant professor of neurology at BUSM, served as the study's lead author and Richard H. Myers, PhD, professor of neurology at BUSM, served as the study's principal investigator and senior author.

A recent paper by the PD Genome Wide Association Study Consortium (PDGC) confirmed that an increased risk for PD was seen in individuals with genetic variants in or near the genes SNCA, MAPT, GAK/DGKQ, HLA and RIT2, but the mechanism behind the increased risk was not determined.

"One possible effect of the variants would be to change the manner in which a gene is expressed in the brains, leading to increased risk of PD," said Latourelle.

To investigate the theory, the researchers examined the relationship between PD-associated genetic variants and levels of gene expression in brain samples from the frontal cortex of 26 samples with known PD and 24 neurologically healthy control samples. Gene expression was determined using a microarray that screened effects of genetic variants on the expression of genes located very close to the variant, called cis-effects, and genes that are far from the variant, such as those on a completely different chromosome, called trans-effects.

An analysis of the cis-effects showed that several genetic variants in the MAPT region showed a significant association to the expression of multiple nearby genes, including gene LOC644246, the duplicated genes LRRC37A and LRRC37A2 and the gene DCAKD. Significant cis-effects were also observed between variants in the HLA region on chromosome 6 and two nearby genes HLA-DQA1 and HLA-DQA1. An examination of trans-effects revealed 23 DNA sequence variations that reached statistical significance involving variants from the SNCA, MAPT and RIT2 genes.

"The identification of the specific altered genes in PD opens opportunities to further study them in model organisms or cell lines with the goal of identifying drugs which may rectify the defects as treatment for PD," said Myers.

This study was funded by the Cogan Family Foundation, the Bumpus Foundation and the National Institute of Neurological Disorders and Stroke (NINDS) under award number PHS-NS076843.

To view the full article online, go to http://dx.plos.org/10.1371/journal. pone.0046199.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: BUSM Gates Foundation HLA HLA-DQA1 Parkinson RIT2 SNCA genetic variant specific gene

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>