Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM study identifies new potential approaches to treat myelofibrosis

24.06.2011
A new study conducted by a team of researchers at Boston University School of Medicine (BUSM) sheds light on a possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers.

The study, published online in the Journal of Biological Chemistry, was conducted under the direction of Katya Ravid, PhD, professor of medicine and biochemistry and director of the Evans Center for Interdisciplinary Biomedical Research at BUSM.

Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, occurs when bone marrow is replaced by scar tissue, resulting in a disruption in blood cell production.

Blood cells originate from precursor stem cells, which typically reside in the bone marrow. Red and white blood cells are categorized as cells with a myeloid lineage, which also includes megakaryocytic cells that give rise to blood-clotting platelets. An excess proliferation of myeloid cells causes a surplus production of fibers outside of the cell, which forms a dense matrix within the bone marrow that disrupts the formation of these blood cells.

Previous research has shown that the enzyme lysyl oxidase links and stabilizes the extracellular fibers, but as of yet, a treatment aimed at inhibiting the formation of these fibers has not been successful. Ravid’s team demonstrated that inhibiting that enzyme using pharmacologic agents resulted in a significant decrease in the burden of myelofibrosis.

The team’s investigation, which used a mouse model with a dense matrix, showed that while the megakaryotic cells that proliferate express high levels of lysyl oxidase, the normal, mature megakaryotic cells express scarce levels of the enzyme. The group also determined that lysyl oxidase boosts the proliferation of these cells, and also identified the mechanism that causes that to happen.

“This study uncovers a potential new approach aimed at controlling and treating myelofibrosis,” said senior author Ravid. “This discovery will allow additional research in the field of leukemia to follow a new avenue with the potential of finding new treatments against the disease.”

Other BUSM researchers involved with this study include Alexia Eliades, PhD, Nicholas Papadantonakis, MD, Ajoy Bhupatiraj, PhD, Kelly Burridge , PhD, Hillary Johnston-Cox, BA, Hector Lucero, PhD and Philip Trackman, PhD. Anna Rita Migliaccio, PhD, from Mt. Sinai School of Medicine and John Crispino, PhD, from Northwestern University Medical School, also contributed to the study. Funding for this study was provided by the National Institutes of Health’s National Heart, Lung and Blood Institute.

About Boston University School of Medicine
Originally established in 1848 as the New England Female Medical College, and incorporated into Boston University in 1873, Boston University School of Medicine today is a leading academic medical center with an enrollment of more than 700 medical students and more than 800 masters and PhD students. Its 1,246 full and part-time faculty members generated more than $335 million in funding in the 2009-2010 academic year for research in amyloidosis, arthritis, cardiovascular disease, cancer, infectious disease, pulmonary disease and dermatology among others. The School is affiliated with Boston Medical Center, its principal teaching hospital, the Boston and Bedford Veterans Administration Medical Centers and 16 other regional hospitals as well as the Boston HealthNet.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>