Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM Study Demonstrates Tomosynthesis Effective in Diagnosing Knee Osteoarthritis

22.03.2012
A recent study done by researchers at Boston University School of Medicine (BUSM) shows that tomosynthesis may be more beneficial in diagnosing knee osteoarthritis than X-ray imaging.
In the study, which is published online in the journal Radiology, tomosynthesis detected more osteophytes (abnormal bony spurs) and subchondral cysts (small collection of fluid within the bone) in the knee joint than conventional X-ray imaging.

Daichi Hayashi, MD, PhD, research instructor at the Quantitative Imaging Center in the department of radiology at BUSM, is the lead author of the study. The research was led by Ali Guermazi, MD, PhD, professor of radiology at BUSM and chief of musculoskeletal radiology at Boston Medical Center.

Osteoarthritis, the most common form of arthritis, is characterized by a degeneration of cartilage and the underlying bone and other soft tissues in the joints, leading to pain and stiffness. According to the Centers for Disease Control and Prevention, osteoarthritis is the leading cause of disability in the United States, affecting approximately 26.9 million Americans.

Osteoarthritis can be diagnosed clinically, from symptoms and physical examinations, or by taking and evaluating images. While X-ray imaging has commonly been used to diagnose the disease, recent research has shown that it is less accurate than Magnetic Resonance Imaging (MRI). However, while MRI provides higher-quality images, it is much more expensive than X-rays and cannot be routinely used in daily clinical practice. CT scan is another imaging technique that can provide detailed images of the joint, but it exposes patients to higher doses of radiation than X-rays.

“Despite the known limitation of X-ray imaging, it is widely used to diagnosis knee osteoarthritis, both in terms of daily clinical practice and also for clinical research studies,” said Hayashi.

Given the limitations, Hayashi and the team lead by Guermazi explored tomosynthesis to image the knee joint and determine its accuracy in detecting signs of osteoarthritis in the knee. Tomosynthesis uses an X-ray beam to take tomographic images (that is, images in slices similar to those from CT scans), which allows for better visualization than from a single X-ray image. The radiation exposure from tomosynthesis is similar to the traditional X-ray and much lower than CT. Also, it takes seconds to obtain images using tomosynthesis and can be done while a person is standing up.

The team examined 40 participants (80 knees), all over the age of 40, who were recruited irrespective of knee pain or an X-ray diagnosis of osteoarthritis. The knees were imaged using X-ray, tomosynthesis and MRI. The presence of osteophytes and subchondral cysts were recorded, and knee pain was assessed for each participant based on a questionnaire.

The results demonstrated that tomosynthesis, compared to X-ray, improves the detection of osteophytes in the knee joint in patients with or without osteoarthritis. The sensitivity for detecting osteophytes increased by five to 29 percent with tomosynthesis compared to X-ray. The sensitivity for detection of subchondral cysts in the knee joint increased by 11 to 50 percent with tomosynthesis compared to X-ray. The study also concludes that subjects with tomosynthesis-detected osteophytes and cysts were more likely to feel pain than those without the lesions.

“This study shows that the images obtained through tomosynthesis are significantly better than those from X-rays and could potentially be a better diagnostic tool for knee osteoarthritis in patients with knee pain,” said Hayashi. “While tomosynthesis has not been widely used in imaging of bones and joints to date, the results of our study show that using tomosynthesis to detect knee osteoarthritis can be effective.”

This study was funded through a research grant to Dr. Guermazi from GE Healthcare.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>