Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken glass yields clues to climate change

28.12.2010
Clues to future climate may be found in the way that an ordinary drinking glass shatters.

A study appearing this week in Proceedings of the National Academy of Sciences finds that microscopic particles of dust, emitted into the atmosphere when dirt breaks apart, follow similar fragment patterns to broken glass and other brittle objects. The research, by National Center for Atmospheric Research (NCAR) scientist Jasper Kok, suggests there are several times more dust particles in the atmosphere than previously thought, since shattered dirt appears to produce an unexpectedly high number of large dust fragments.

The finding has implications for understanding future climate change because dust plays a significant role in controlling the amount of solar energy in the atmosphere. Depending on their size and other characteristics, some dust particles reflect solar energy and cool the planet, while others trap energy as heat.

“As small as they are, conglomerates of dust particles in soils behave the same way on impact as a glass dropped on a kitchen floor,” Kok says. “Knowing this pattern can help us put together a clearer picture of what our future climate will look like.”

The study may also improve the accuracy of weather forecasting, especially in dust-prone regions. Dust particles affect clouds and precipitation, as well as temperatures.

The research was supported by the National Science Foundation, which sponsors NCAR.

Shattered soil
Kok’s research focused on a type of airborne particle known as mineral dust. These particles are usually emitted when grains of sand are blown into soil, shattering dirt and sending fragments into the air. The fragments can be as large as about 50 microns in diameter, or about the thickness of a fine strand of human hair.

The smallest particles, which are classified as clay and are as tiny as 2 microns in diameter, remain in the atmosphere for about a week, circling much of the globe and exerting a cooling influence by reflecting heat from the Sun back into space. Larger particles, classified as silt, fall out of the atmosphere after a few days. The larger the particle, the more it will tend to have a heating effect on the atmosphere.

Kok’s research indicates that the ratio of silt particles to clay particles is two to eight times greater than represented in climate models.

Since climate scientists carefully calibrate the models to simulate the actual number of clay particles in the atmosphere, the paper suggests that models most likely err when it comes to the number of silt particles. Most of these larger particles swirl in the atmosphere within about 1,000 miles of desert regions, so adjusting their quantity in computer models should generate better projections of future climate in desert regions, such as the southwestern United States and northern Africa.

Additional research will be needed to determine whether future temperatures in those regions will increase more or less than currently indicated by computer models.

The study results also suggest that marine ecosystems, which draw down carbon dioxide from the atmosphere, may receive substantially more iron from airborne particles than previously estimated. The iron enhances biological activity, benefiting ocean food chains, including plants that take up carbon during photosynthesis.

In addition to influencing the amount of solar heat in the atmosphere, dust particles also get deposited on mountain snowpacks, where they absorb heat and accelerate melt.

Glass and dust: Common fracture patterns
Physicists have long known that certain brittle objects, such as glass or rocks, and even atomic nuclei, fracture in predictable patterns. The resulting fragments follow a certain range of sizes, with a predictable distribution of small, medium, and large pieces. Scientists refer to this type of pattern as scale invariance or self-similarity.

Physicists have devised mathematical formulas for the process by which cracks propagate in predictable ways as a brittle object breaks. Kok theorized that it would be possible to use these formulas to estimate the range of dust particle sizes. He turned to a 1983 study by Guillaume d’Almeida and Lothar Schüth from the Institute for Meteorology at the University of Mainz in Germany that measured the particle size distribution of arid soil.

By applying the formulas for fracture patterns of brittle objects to the soil measurements, Kok determined the size distribution of emitted dust particles. To his surprise, the formulas described measurements of dust particle sizes almost exactly.

“The idea that all these objects shatter in the same way is a beautiful thing, actually,” Kok says. “It’s nature’s way of creating order in chaos.”

About the article
Title: “A scaling theory for the size distribution of emitted dust aerosols suggests that climate models underestimate the size of the global dust cycle”

Author: Jasper Kok

Publication: Proceedings of the National Academy of Sciences

Rachael Drummond | EurekAlert!
Further information:
http://www.ucar.edu
http://www2.ucar.edu/news/3510/broken-glass-yields-clues-climate-change

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>