Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken glass yields clues to climate change

28.12.2010
Clues to future climate may be found in the way that an ordinary drinking glass shatters.

A study appearing this week in Proceedings of the National Academy of Sciences finds that microscopic particles of dust, emitted into the atmosphere when dirt breaks apart, follow similar fragment patterns to broken glass and other brittle objects. The research, by National Center for Atmospheric Research (NCAR) scientist Jasper Kok, suggests there are several times more dust particles in the atmosphere than previously thought, since shattered dirt appears to produce an unexpectedly high number of large dust fragments.

The finding has implications for understanding future climate change because dust plays a significant role in controlling the amount of solar energy in the atmosphere. Depending on their size and other characteristics, some dust particles reflect solar energy and cool the planet, while others trap energy as heat.

“As small as they are, conglomerates of dust particles in soils behave the same way on impact as a glass dropped on a kitchen floor,” Kok says. “Knowing this pattern can help us put together a clearer picture of what our future climate will look like.”

The study may also improve the accuracy of weather forecasting, especially in dust-prone regions. Dust particles affect clouds and precipitation, as well as temperatures.

The research was supported by the National Science Foundation, which sponsors NCAR.

Shattered soil
Kok’s research focused on a type of airborne particle known as mineral dust. These particles are usually emitted when grains of sand are blown into soil, shattering dirt and sending fragments into the air. The fragments can be as large as about 50 microns in diameter, or about the thickness of a fine strand of human hair.

The smallest particles, which are classified as clay and are as tiny as 2 microns in diameter, remain in the atmosphere for about a week, circling much of the globe and exerting a cooling influence by reflecting heat from the Sun back into space. Larger particles, classified as silt, fall out of the atmosphere after a few days. The larger the particle, the more it will tend to have a heating effect on the atmosphere.

Kok’s research indicates that the ratio of silt particles to clay particles is two to eight times greater than represented in climate models.

Since climate scientists carefully calibrate the models to simulate the actual number of clay particles in the atmosphere, the paper suggests that models most likely err when it comes to the number of silt particles. Most of these larger particles swirl in the atmosphere within about 1,000 miles of desert regions, so adjusting their quantity in computer models should generate better projections of future climate in desert regions, such as the southwestern United States and northern Africa.

Additional research will be needed to determine whether future temperatures in those regions will increase more or less than currently indicated by computer models.

The study results also suggest that marine ecosystems, which draw down carbon dioxide from the atmosphere, may receive substantially more iron from airborne particles than previously estimated. The iron enhances biological activity, benefiting ocean food chains, including plants that take up carbon during photosynthesis.

In addition to influencing the amount of solar heat in the atmosphere, dust particles also get deposited on mountain snowpacks, where they absorb heat and accelerate melt.

Glass and dust: Common fracture patterns
Physicists have long known that certain brittle objects, such as glass or rocks, and even atomic nuclei, fracture in predictable patterns. The resulting fragments follow a certain range of sizes, with a predictable distribution of small, medium, and large pieces. Scientists refer to this type of pattern as scale invariance or self-similarity.

Physicists have devised mathematical formulas for the process by which cracks propagate in predictable ways as a brittle object breaks. Kok theorized that it would be possible to use these formulas to estimate the range of dust particle sizes. He turned to a 1983 study by Guillaume d’Almeida and Lothar Schüth from the Institute for Meteorology at the University of Mainz in Germany that measured the particle size distribution of arid soil.

By applying the formulas for fracture patterns of brittle objects to the soil measurements, Kok determined the size distribution of emitted dust particles. To his surprise, the formulas described measurements of dust particle sizes almost exactly.

“The idea that all these objects shatter in the same way is a beautiful thing, actually,” Kok says. “It’s nature’s way of creating order in chaos.”

About the article
Title: “A scaling theory for the size distribution of emitted dust aerosols suggests that climate models underestimate the size of the global dust cycle”

Author: Jasper Kok

Publication: Proceedings of the National Academy of Sciences

Rachael Drummond | EurekAlert!
Further information:
http://www.ucar.edu
http://www2.ucar.edu/news/3510/broken-glass-yields-clues-climate-change

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>