Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken arm? Brain shifts quickly when using a sling or cast

17.01.2012
Using a sling or cast after injuring an arm may cause your brain to shift quickly to adjust, according to a study published in the January 17, 2012, print issue of Neurology®, the medical journal of the American Academy of Neurology. The study found increases in the size of brain areas that were compensating for the injured side, and decreases in areas that were not being used due to the cast or sling.

"These results are especially interesting for rehabilitation therapy for people who've had strokes or other issues," said study author Nicolas Langer, MSc, with the University of Zurich in Switzerland. "One type of therapy restrains the unaffected, or "good," arm to strengthen the affected arm and help the brain learn new pathways. This study shows that there are both positive and negative effects of this type of treatment."

For the study, researchers examined 10 right-handed people with an injury of the upper right arm that required a sling for at least 14 days. The entire right arm and hand were restricted to little or no movement during the study period. As a result, participants used their non-dominant left hand for daily activities such as washing, using a toothbrush, eating or writing. None of the people in the study had a brain injury, psychiatric disease or nerve injury.

The group underwent two MRI brain scans, the first within two days of the injury and the second within 16 days of wearing the cast or sling. The scans measured the amount of gray and white matter in the brain. Participants' motor skills, including arm-hand movements and wrist-finger speed, were also tested.

The study found that amount of gray and white matter in the left side of the brain decreased up to ten percent, while the amount of gray and white matter in the right side of the brain increased in size.

"We also saw improved motor skills in the left, non-injured hand, which directly related to an increase in thickness in the right side of the brain," said Langer. "These structural changes in the brain are associated with skill transfer from the right hand to the left hand."

Langer noted that the study did not look at whether the decreases would be permanent.

"Further studies should examine whether using a restraint for stroke patients is really a necessity for improving arm and hand movement," he said. "Our results also support the current trauma surgery guidelines stating that an injured arm or leg should be immobilized 'as short as possible, as long as necessary.'"

The study was supported by the National Center of Competence in Research and the Swiss National Science Foundation.

The American Academy of Neurology, an association of 24,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer's disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson's disease and epilepsy.

For more information about the American Academy of Neurology, visit http://www.aan.com or find us on Facebook, Twitter, Google+ and YouTube.

Rachel Seroka | American Academy of Neurology
Further information:
http://www.aan.com

Further reports about: Academy Academy of Neurology Brain Broken arm Neurology brain injury

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>