Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broadcast study of ocean acidification to date helps scientists evaluate effects on marine life

24.01.2012
Might a penguin's next meal be affected by the exhaust from your tailpipe?

The answer may be yes, when you add your exhaust fumes to the total amount of carbon dioxide lofted into the atmosphere by humans since the industrial revolution. One-third of that carbon dioxide is absorbed by the world's oceans, making them more acidic and affecting marine life.

A UC Santa Barbara marine scientist and a team of 18 other researchers have reported results of the broadest worldwide study of ocean acidification to date. Acidification is known to be a direct result of the increasing amount of greenhouse gas emissions. The scientists used sensors developed at Scripps Institution of Oceanography at UC San Diego to measure the acidity of 15 ocean locations, including seawater in the Antarctic, and in temperate and tropical waters.

As oceans become more acidic, with a lower pH, marine organisms are stressed and entire ecosystems are affected, according to the scientists. Gretchen E. Hofmann, an eco-physiologist and professor in UCSB's Department of Ecology, Evolution & Marine Biology, is lead author of the recent article in PLoS ONE that describes the research.

"We were able to illustrate how parts of the world's oceans currently have different pH, and thus how they might respond to climate changes in the future," said Hofmann. "The sensors allowed us to capture that." The sensors recorded at least 30 days of continuous pH values in each area of the study.

Since the beginning of the industrial revolution, human activities have accelerated the release of carbon dioxide into the atmosphere as carbon dioxide mixes with water. The two molecules combine to become carbonic acid, making seawater more acidic. As billions of molecules combine and go through this process, the overall pH of the oceans decreases, causing ocean acidification.

Acidification limits the amount of carbonate forms that are needed by marine invertebrates, such as coral, urchins, snails, and shellfish, to make their skeletons. As the concentration of carbonates decreases in acidified water, it is harder to make a shell. And, the structures of some organisms may dissolve when water chemistry becomes too unfavorable.

"The emerging pH data from sensors allows us to design lab experiments that have a present-day environmental context," said Hofmann. "The experiments will allow us to see how organisms are adapted now, and how they might respond to climate change in the future."

Hofmann researched the Antarctic, where she has worked extensively, as well as an area of coral reefs around the South Pacific island of Moorea, where UCSB has a Long-Term Ecological Research (LTER) project. She also studied the coastal waters of Santa Barbara, in conjunction with UCSB's Santa Barbara Coastal LTER. The research team provided 30 days of pH data from other ocean areas around the world.

The researchers found that, in some places such as Antarctica and the Line Islands of the South Pacific, the range of pH variance is much more limited than in areas of the California coast that are subject to large vertical movements of water, known as upwellings. In some of the study areas, the researchers found that the decrease in seawater pH being caused by greenhouse gas emissions is still within the bounds of natural pH fluctuation. Other areas already experience daily acidity levels that scientists had expected would only be reached at the end of this century.

"This study is important for identifying the complexity of the ocean acidification problem around the globe," said co-author Jennifer Smith, a marine biologist with Scripps. "Our data show such huge variability in seawater pH, both within and across marine ecosystems, making global predictions of the impacts of ocean acidification a big challenge."

Todd Martz, a marine chemistry researcher at Scripps, developed the sensor. "When I arrived at Scripps, we re-engineered my prototype design, and since then I have not been able to keep up with all of the requests for sensors," said Martz. "Because every sensor used in this study was built at Scripps, I was in a unique position to assimilate a number of datasets, collected independently by researchers who otherwise would not have been in communication with each other. Each time someone deployed a sensor, they would send me the data, and eventually it became clear that a synthesis should be done to cross-compare this diverse collection of measurements." Hoffman worked with Martz to put together the research team to create that synthesis.

The team noted that the Scripps sensors, called "SeaFET" and "SeapHOx," allow researchers to continuously and autonomously monitor pH from remote parts of the world, providing important baselines from which scientists can monitor future changes caused by ocean acidification.

Despite surveying 15 different ocean regions, the authors noted that they only made observations on coastal surface oceans, and that more study is needed in deeper ocean regions farther away from land.

Hofmann is the director of the Center for the Study of Ocean Acidification and Ocean Change, a UC multi-campus initiative. Hofmann participated in writing a report on ocean acidification while on the National Research Council's Ocean Acidification Committee, and she is currently participating as a lead author on the National Climate Assessment. Hofmann is a member of the National Science Foundation's Office of Polar Programs Advisory Panel, and she is an Aldo Leopold Fellow.

In addition to Hofmann, Martz, and Smith, co-authors include Emily B. Rivest and Pauline Yu of UCSB; Uwe Send, Lisa Levin, Yuichiro Takeshita, Nichole N. Price, Brittany Peterson, and Christina A. Frieder of Scripps; Paul Matson and Kenneth Johnson of the Monterey Bay Aquarium Research Institute; Fiorenza Micheli and Kristy Kroeker of Stanford University; Adina Paytan and Elizabeth Derse Crook of UC Santa Cruz; and Maria Cristina Gambi of Stazione Zoologica Anton Dohrn in Naples, Italy.

Funding for instrument development and related field work came from several sources, including the National Science Foundation, the David and Lucile Packard Foundation, the University of California, the Gordon and Betty Moore Foundation, the Nature Conservancy, the WWW Foundation, Scott and Karin Wilson, the Rhodes family, and NOAA.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>