Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bridging the gender gap

20.07.2010
Combined technologies offer promise for detecting colon cancer in women

A team led by a Northwestern University biomedical engineer has found that combining novel optical technologies with a common colon cancer screening test may allow doctors to more accurately detect the presence of colon cancer, particularly in women.

The study, led by Vadim Backman, professor of biomedical engineering at Northwestern's McCormick School of Engineering, in partnership with colleagues at NorthShore University HealthSystem (led by Hemant K. Roy, M.D.), combined a polarization-gating optical probe alongside traditional flexible sigmoidoscopy to measure the early increase in blood supply in rectal tissue as a marker for colon cancer. The results are published this month in the journal Cancer Prevention Research.

Flexible sigmoidoscopy is a widely available screening technique that is approved by major guideline organizations. During a flexible sigmoidoscopy exam, doctors use a thin, flexible tube to examine the lower third of the colon. The procedure is an attractive screening mechanism for colon cancer because the test is quick and affordable, can be conducted by a primary care physician and requires simpler bowel preparation than that of a colonoscopy.

However, the test isn't as widely used for colon cancer screening because it only examines a third of the colon, compared to the full colon examination conducted during colonoscopy.

While colon cancer strikes roughly as many women as men, there are significant differences in how the disease presents itself. Women are more likely to have cancerous lesions in the proximal colon, the section of the colon furthest away from the rectum – and the part of the colon that isn't examined during flexible sigmoidoscopy. Due to this discrepancy, previous studies found that flexible sigmoidoscopy alone detected only one-third of colon cancer in women.

A 2009 study in the Annals of Internal Medicine called into question the effectiveness of colonoscopy in detecting proximal colon cancer, which raises concern about the disparity between the effectiveness of colon cancer screening techniques for men and women. Given women's proclivity toward proximal tumors – the hardest to detect using current technologies – researchers are seeking to develop even stronger screening techniques for women.

"Because women are particularly likely to develop cancer in the proximal colon – the hardest to detect – there is a disparity in screening for colorectal cancer in women," says Roy, director of gastroenterology research at NorthShore University HealthSystem. "This study is one of several efforts to apply new technologies to improve our ability to detect cancer, specifically in women."

The researchers hoped that by combining the test with an optic probe that measures how light scatters through tissue would provide a way to measure very subtle changes in the tissue that can indicate the presence of cancer in the organ. The technology makes use of a biological phenomenon known as the "field effect," a hypothesis that suggests the genetic and environmental milieu that results in a neoplastic lesion in one area of an organ should be detectable throughout the organ and even in neighboring tissue. Backman's group has applied a suite of optical technologies to identify signs of the field effect in colon, pancreatic and lung cancers.

"Using these optical techniques, we can identify very subtle changes in tissue that appears to be normal when examined using traditional techniques," says Backman. "This increased level of detail allows us to discover new markers for disease, which we hope will provide new methods to identify cancer in its earliest stages."

In the study of 366 male and female patients, researchers found the performance characteristics of the test to be very promising. The technique identified with 100 percent accuracy each person who had a neoplasia in the proximal colon. Some people were identified who did not have a tumor; it is uncertain whether this is a false finding or if it means those people could be at risk for developing cancer and need to be watched closely.

When comparing the results for each gender, researchers found that the early increase in blood supply was a particularly robust marker for proximal neoplasia in women. This result provides hope that the technique could provide a mechanism to improve possible discrepancies in the accuracy of colon cancer screening between men and women.

"Our hope is not to replace the colonoscopy, but to develop better screening techniques to determine who needs a colonoscopy," says Backman. "If we can develop something that can be used by a primary care physician, we can vastly increase the number of people who are screened, and ultimately treated, for this disease."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>