Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breathing technique can reduce frequency, severity of asthma attacks

23.09.2009
SMU researchers expand study that shows promise

As the health care reform debate turns to cutting costs and improving treatment outcomes, two professors at Southern Methodist University in Dallas are expanding a study that shows promise for reducing both the expense and suffering associated with chronic asthma.

Thomas Ritz and Alicia Meuret, both in SMU's Psychology Department, have developed a four-week program to teach asthmatics how to better control their condition by changing the way they breathe.

With the help of a four-year, $1.4 million grant from the National Institutes of Health, they plan to engage 120 Dallas County patients in four weeks of breathing training by the study's projected end in July 2011. Their co-investigators include David Rosenfield, also of SMU's Psychology Department, and Mark Millard, M.D., of Baylor University Medical Center in Dallas.

More than 22 million Americans suffer from asthma at an estimated annual economic cost of more than $19 billion, according to the American Lung Association. The number of cases doubled between 1980 and 1995, prompting the U.S. Department of Health and Human Services to classify the disease as an epidemic in 2000.

During an attack, sufferers tend to hyperventilate, breathing fast and deep against constricted airways to fight an overwhelming feeling of oxygen deprivation.

Unfortunately, this makes the problem worse by lowering the body's carbon dioxide levels, which restricts blood flow to the brain and can further irritate already hypersensitive bronchial passages.

Patients who "overbreathe" on a sustained basis risk chronic CO2 deficiencies that make them even more vulnerable to future attacks. Rescue medications that relieve asthma symptoms do nothing to correct breathing difficulties associated with hyperventilation.

As part of SMU's "Stress, Anxiety and Chronic Disease Research Program," Ritz and Meuret use their biofeedback-based Capnometry-Assisted Respiratory Training (CART) to teach asthma patients to normalize and reverse chronic overbreathing. A hand-held device called a capnometer measures the amount of CO2 exhaled. Using this device, patients learn how to breathe more slowly, shallowly and regularly.

CART techniques could have a positive impact on quality of asthma treatment even as they reduce the need for acute care, Ritz says.

"The research shows that this kind of respiratory therapy can limit both the severity and frequency of asthma attacks," he says. "That means fewer doctor visits and less frequent use of rescue medications, with the associated savings of both time and money."

And for those who count any year without a trip to the emergency room as a year with a good treatment outcome, that means a higher quality of life, says Meuret, who lives with asthma herself.

"The training gives patients new ways to deal with acute symptoms, and that helps them to feel more in control," she says.

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>