Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breathing technique can reduce frequency, severity of asthma attacks

23.09.2009
SMU researchers expand study that shows promise

As the health care reform debate turns to cutting costs and improving treatment outcomes, two professors at Southern Methodist University in Dallas are expanding a study that shows promise for reducing both the expense and suffering associated with chronic asthma.

Thomas Ritz and Alicia Meuret, both in SMU's Psychology Department, have developed a four-week program to teach asthmatics how to better control their condition by changing the way they breathe.

With the help of a four-year, $1.4 million grant from the National Institutes of Health, they plan to engage 120 Dallas County patients in four weeks of breathing training by the study's projected end in July 2011. Their co-investigators include David Rosenfield, also of SMU's Psychology Department, and Mark Millard, M.D., of Baylor University Medical Center in Dallas.

More than 22 million Americans suffer from asthma at an estimated annual economic cost of more than $19 billion, according to the American Lung Association. The number of cases doubled between 1980 and 1995, prompting the U.S. Department of Health and Human Services to classify the disease as an epidemic in 2000.

During an attack, sufferers tend to hyperventilate, breathing fast and deep against constricted airways to fight an overwhelming feeling of oxygen deprivation.

Unfortunately, this makes the problem worse by lowering the body's carbon dioxide levels, which restricts blood flow to the brain and can further irritate already hypersensitive bronchial passages.

Patients who "overbreathe" on a sustained basis risk chronic CO2 deficiencies that make them even more vulnerable to future attacks. Rescue medications that relieve asthma symptoms do nothing to correct breathing difficulties associated with hyperventilation.

As part of SMU's "Stress, Anxiety and Chronic Disease Research Program," Ritz and Meuret use their biofeedback-based Capnometry-Assisted Respiratory Training (CART) to teach asthma patients to normalize and reverse chronic overbreathing. A hand-held device called a capnometer measures the amount of CO2 exhaled. Using this device, patients learn how to breathe more slowly, shallowly and regularly.

CART techniques could have a positive impact on quality of asthma treatment even as they reduce the need for acute care, Ritz says.

"The research shows that this kind of respiratory therapy can limit both the severity and frequency of asthma attacks," he says. "That means fewer doctor visits and less frequent use of rescue medications, with the associated savings of both time and money."

And for those who count any year without a trip to the emergency room as a year with a good treatment outcome, that means a higher quality of life, says Meuret, who lives with asthma herself.

"The training gives patients new ways to deal with acute symptoms, and that helps them to feel more in control," she says.

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>