Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean air in Iowa

14.05.2014

University of Iowa study reports air quality statewide falls within federal cleanliness standards

With warmer weather, it's time to get outdoors. And now you can breathe easy about it: A new study from the University of Iowa reports Iowa's air quality falls within government guidelines for cleanliness.


University of Iowa researchers report that Iowa falls within federal air quality standards for fine particulates. The report is based on analyzing data, on an annual average, over three years at rural and urban locations in the state. Illustration by Sondra Cue.

The UI researchers analyzed air quality and pollution data compiled by state and county agencies over nearly three years at five sites spread statewide—urban areas Cedar Rapids, Davenport and Des Moines and rural locations in Montgomery county in southwest Iowa and Van Buren county in the southeast. The result: The air, as measured by a class of fine particulate pollutants at those locations and based on an annual average, fell within federal cleanliness guidelines.

The study also is the first to examine differences in air quality and pollution sources between urban and rural areas in the Midwest. This is an important distinction, because a higher percentage of the population in the Midwest lives in rural areas, when compared with other regions in the U.S., the researchers note. In Iowa, 44 percent of residents live in the country.

“In general, our air in Iowa is pretty good,” says Betsy Stone, assistant professor in chemistry at the UI and lead author of the study, published in the Royal Society of Chemistry journal Environmental Science: Processes & Impacts.

The researchers analyzed data gathered from April 2009 to December 2012 from monitors run by the Iowa Department of Natural Resources and the health departments in Linn and Polk counties. Using that information, the researchers found that fine particle levels during that time span at the urban and rural locations were below the newest yearly-average National Ambient Air Quality Standards, set by the U.S. Environmental Protection Agency.

Stone and Shuvashish Kundu, a former post-doctoral researcher at the UI now at Hokkaido University in Japan and the paper’s first author, looked at particulates with an airborne diameter of roughly 2.5 microns. These particles come from various sources, ranging from campfires and leaf burning, to vehicle exhaust and power-plant emissions. No matter the source, they pose a health threat to people, because they are small enough to bypass the respiratory system’s natural defenses and get lodged in the deepest recesses of the lungs.

“Respirable particles are a danger to human health, and acute exposure have been linked to respiratory illness and even death," Stone notes.

The EPA regulates the particulates, known as PM2.5. The agency also regulates coarser particles, those with an airborne diameter of roughly 10 microns, which were not part of this study. In 2012, the EPA lowered the primary standard for the annual average concentration of PM2.5 particulates considered safe, as more information became known about their prevalence and danger to human health.

In general, the UI researchers found that the concentration of PM2.5 particulates was higher at the urban monitoring sites than the rural locations. This was true especially for particles associated with exhaust from gasoline- and diesel-powered vehicles. Diesel combustion, in particular, was 230 percent higher in urban areas than rural, the study found.

The rural sites had slightly higher concentrations of secondary nitrates—which form by chemical reactions in the atmosphere and are most prevalent in wintertime—according to the data.

Another particulate, secondary sulfates (formed in the atmosphere from emissions, such as those from coal-fired power plants), had the highest concentration (between 30 and 44 percent) of all pollutants at urban and rural sites, with readings being mostly uniform across locations.

“In general, we see most (urban and rural monitoring) sites have comparable levels of sulfates,” notes Stone, a native Iowan. “That suggests it’s a regional phenomenon affecting all of Iowa.”

Other pollution impacts, such as particulates from cars and diesel vehicles, were more local, which is what the researchers expected.

Of the monitoring sites, Davenport had the highest PM2.5 concentration—although within federal air-quality standards—with the highest iron, zinc, and lead concentrations, the data showed. The cause appears to be attributable mostly to localized industrial activity and could also be accentuated by vehicular exhaust and diesel-powered barge traffic on the Mississippi River, the researchers say.

While Iowa’s air is generally clean, the state could use the study’s findings to make it even healthier. “I would say this tells us quite a lot about the sources of air pollution,” Stone says. "Yet, I don't want to send the message that we shouldn't be concerned about air quality in Iowa. Even low levels of pollutants can have negative health impacts."

The National Institutes of Health (project number: 5P30ES005605-24) funded the research, through a seed grant obtained by the Environmental Health Sciences Research Center in the UI College of Public Health.

Contacts

Betsy Stone, Chemistry, 319- 384-1863
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/04/breathe-easy-iowa-your-air-relatively-healthy

Further reports about: Air Quality Diesel EPA Environmental Protection activity atmosphere exposure healthy

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>