Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean air in Iowa

14.05.2014

University of Iowa study reports air quality statewide falls within federal cleanliness standards

With warmer weather, it's time to get outdoors. And now you can breathe easy about it: A new study from the University of Iowa reports Iowa's air quality falls within government guidelines for cleanliness.


University of Iowa researchers report that Iowa falls within federal air quality standards for fine particulates. The report is based on analyzing data, on an annual average, over three years at rural and urban locations in the state. Illustration by Sondra Cue.

The UI researchers analyzed air quality and pollution data compiled by state and county agencies over nearly three years at five sites spread statewide—urban areas Cedar Rapids, Davenport and Des Moines and rural locations in Montgomery county in southwest Iowa and Van Buren county in the southeast. The result: The air, as measured by a class of fine particulate pollutants at those locations and based on an annual average, fell within federal cleanliness guidelines.

The study also is the first to examine differences in air quality and pollution sources between urban and rural areas in the Midwest. This is an important distinction, because a higher percentage of the population in the Midwest lives in rural areas, when compared with other regions in the U.S., the researchers note. In Iowa, 44 percent of residents live in the country.

“In general, our air in Iowa is pretty good,” says Betsy Stone, assistant professor in chemistry at the UI and lead author of the study, published in the Royal Society of Chemistry journal Environmental Science: Processes & Impacts.

The researchers analyzed data gathered from April 2009 to December 2012 from monitors run by the Iowa Department of Natural Resources and the health departments in Linn and Polk counties. Using that information, the researchers found that fine particle levels during that time span at the urban and rural locations were below the newest yearly-average National Ambient Air Quality Standards, set by the U.S. Environmental Protection Agency.

Stone and Shuvashish Kundu, a former post-doctoral researcher at the UI now at Hokkaido University in Japan and the paper’s first author, looked at particulates with an airborne diameter of roughly 2.5 microns. These particles come from various sources, ranging from campfires and leaf burning, to vehicle exhaust and power-plant emissions. No matter the source, they pose a health threat to people, because they are small enough to bypass the respiratory system’s natural defenses and get lodged in the deepest recesses of the lungs.

“Respirable particles are a danger to human health, and acute exposure have been linked to respiratory illness and even death," Stone notes.

The EPA regulates the particulates, known as PM2.5. The agency also regulates coarser particles, those with an airborne diameter of roughly 10 microns, which were not part of this study. In 2012, the EPA lowered the primary standard for the annual average concentration of PM2.5 particulates considered safe, as more information became known about their prevalence and danger to human health.

In general, the UI researchers found that the concentration of PM2.5 particulates was higher at the urban monitoring sites than the rural locations. This was true especially for particles associated with exhaust from gasoline- and diesel-powered vehicles. Diesel combustion, in particular, was 230 percent higher in urban areas than rural, the study found.

The rural sites had slightly higher concentrations of secondary nitrates—which form by chemical reactions in the atmosphere and are most prevalent in wintertime—according to the data.

Another particulate, secondary sulfates (formed in the atmosphere from emissions, such as those from coal-fired power plants), had the highest concentration (between 30 and 44 percent) of all pollutants at urban and rural sites, with readings being mostly uniform across locations.

“In general, we see most (urban and rural monitoring) sites have comparable levels of sulfates,” notes Stone, a native Iowan. “That suggests it’s a regional phenomenon affecting all of Iowa.”

Other pollution impacts, such as particulates from cars and diesel vehicles, were more local, which is what the researchers expected.

Of the monitoring sites, Davenport had the highest PM2.5 concentration—although within federal air-quality standards—with the highest iron, zinc, and lead concentrations, the data showed. The cause appears to be attributable mostly to localized industrial activity and could also be accentuated by vehicular exhaust and diesel-powered barge traffic on the Mississippi River, the researchers say.

While Iowa’s air is generally clean, the state could use the study’s findings to make it even healthier. “I would say this tells us quite a lot about the sources of air pollution,” Stone says. "Yet, I don't want to send the message that we shouldn't be concerned about air quality in Iowa. Even low levels of pollutants can have negative health impacts."

The National Institutes of Health (project number: 5P30ES005605-24) funded the research, through a seed grant obtained by the Environmental Health Sciences Research Center in the UI College of Public Health.

Contacts

Betsy Stone, Chemistry, 319- 384-1863
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/04/breathe-easy-iowa-your-air-relatively-healthy

Further reports about: Air Quality Diesel EPA Environmental Protection activity atmosphere exposure healthy

More articles from Studies and Analyses:

nachricht R&D - Fit for future
28.04.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Emotion recognition ability pays off
27.04.2015 | WHU - Otto Beisheim School of Management

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

NASA sees tropical storm noul strengthening, organizing

05.05.2015 | Earth Sciences

Puget Sound's clingfish could inspire better medical devices, whale tags

05.05.2015 | Life Sciences

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>