Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean air in Iowa

14.05.2014

University of Iowa study reports air quality statewide falls within federal cleanliness standards

With warmer weather, it's time to get outdoors. And now you can breathe easy about it: A new study from the University of Iowa reports Iowa's air quality falls within government guidelines for cleanliness.


University of Iowa researchers report that Iowa falls within federal air quality standards for fine particulates. The report is based on analyzing data, on an annual average, over three years at rural and urban locations in the state. Illustration by Sondra Cue.

The UI researchers analyzed air quality and pollution data compiled by state and county agencies over nearly three years at five sites spread statewide—urban areas Cedar Rapids, Davenport and Des Moines and rural locations in Montgomery county in southwest Iowa and Van Buren county in the southeast. The result: The air, as measured by a class of fine particulate pollutants at those locations and based on an annual average, fell within federal cleanliness guidelines.

The study also is the first to examine differences in air quality and pollution sources between urban and rural areas in the Midwest. This is an important distinction, because a higher percentage of the population in the Midwest lives in rural areas, when compared with other regions in the U.S., the researchers note. In Iowa, 44 percent of residents live in the country.

“In general, our air in Iowa is pretty good,” says Betsy Stone, assistant professor in chemistry at the UI and lead author of the study, published in the Royal Society of Chemistry journal Environmental Science: Processes & Impacts.

The researchers analyzed data gathered from April 2009 to December 2012 from monitors run by the Iowa Department of Natural Resources and the health departments in Linn and Polk counties. Using that information, the researchers found that fine particle levels during that time span at the urban and rural locations were below the newest yearly-average National Ambient Air Quality Standards, set by the U.S. Environmental Protection Agency.

Stone and Shuvashish Kundu, a former post-doctoral researcher at the UI now at Hokkaido University in Japan and the paper’s first author, looked at particulates with an airborne diameter of roughly 2.5 microns. These particles come from various sources, ranging from campfires and leaf burning, to vehicle exhaust and power-plant emissions. No matter the source, they pose a health threat to people, because they are small enough to bypass the respiratory system’s natural defenses and get lodged in the deepest recesses of the lungs.

“Respirable particles are a danger to human health, and acute exposure have been linked to respiratory illness and even death," Stone notes.

The EPA regulates the particulates, known as PM2.5. The agency also regulates coarser particles, those with an airborne diameter of roughly 10 microns, which were not part of this study. In 2012, the EPA lowered the primary standard for the annual average concentration of PM2.5 particulates considered safe, as more information became known about their prevalence and danger to human health.

In general, the UI researchers found that the concentration of PM2.5 particulates was higher at the urban monitoring sites than the rural locations. This was true especially for particles associated with exhaust from gasoline- and diesel-powered vehicles. Diesel combustion, in particular, was 230 percent higher in urban areas than rural, the study found.

The rural sites had slightly higher concentrations of secondary nitrates—which form by chemical reactions in the atmosphere and are most prevalent in wintertime—according to the data.

Another particulate, secondary sulfates (formed in the atmosphere from emissions, such as those from coal-fired power plants), had the highest concentration (between 30 and 44 percent) of all pollutants at urban and rural sites, with readings being mostly uniform across locations.

“In general, we see most (urban and rural monitoring) sites have comparable levels of sulfates,” notes Stone, a native Iowan. “That suggests it’s a regional phenomenon affecting all of Iowa.”

Other pollution impacts, such as particulates from cars and diesel vehicles, were more local, which is what the researchers expected.

Of the monitoring sites, Davenport had the highest PM2.5 concentration—although within federal air-quality standards—with the highest iron, zinc, and lead concentrations, the data showed. The cause appears to be attributable mostly to localized industrial activity and could also be accentuated by vehicular exhaust and diesel-powered barge traffic on the Mississippi River, the researchers say.

While Iowa’s air is generally clean, the state could use the study’s findings to make it even healthier. “I would say this tells us quite a lot about the sources of air pollution,” Stone says. "Yet, I don't want to send the message that we shouldn't be concerned about air quality in Iowa. Even low levels of pollutants can have negative health impacts."

The National Institutes of Health (project number: 5P30ES005605-24) funded the research, through a seed grant obtained by the Environmental Health Sciences Research Center in the UI College of Public Health.

Contacts

Betsy Stone, Chemistry, 319- 384-1863
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/04/breathe-easy-iowa-your-air-relatively-healthy

Further reports about: Air Quality Diesel EPA Environmental Protection activity atmosphere exposure healthy

More articles from Studies and Analyses:

nachricht Study suggests new way of preventing diabetes-associated blindness
26.05.2015 | Johns Hopkins Medicine

nachricht Memories Influence Choice of Food
22.05.2015 | Universität Basel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>