Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough for more efficient drug development

18.01.2011
Developing new drugs is a highly costly and time-consuming process. Of 20 candidates, 19 are normally rejected because they don’t work or have unwanted side effects. Now a research team led by Professor Lars Baltzer at Uppsala University has produced a tiny molecular “binder” that has the potential to change this landscape radically.

The study, published today in the prestigious journal Angewandte Chemie, presents the concept of a tiny polypeptide consisting of 42 amino acids to which virtually any target-seeking organic molecule can be bound. In the body it then seeks out the designated sites to be treated. What’s unique about the polypeptide is that it dramatically enhances the properties of the little molecule in a simple and very general way.

- This produces superbinders. They bind more strongly and more specifically than other alternatives, says Lars Baltzer, professor of organic chemistry, who believes it will be possible to rapidly develop new drugs much more readily with this new concept.

The whole concept goes against the grain of what is usually done in drug development. Traditionally it’s usually a matter of synthesizing drugs from A to Z, with certain requirements needing to be met in order to succeed. Drugs should be low molecular (500 Da), be highly fat soluble, and have no more than ten binding sites in order to pass through the cell membrane. But the majority are ineffective or toxic, and nowadays there are also ways to get larger molecules through cell membranes. Recently therapeutic antibodies have emerged as an alternative. They’re large (150,000 Da) and bind to the outside of cells, which they then “block.”

The new peptide is 5,000 Da or only 1/30 as large as a typical antibody, which is smaller than was thought possible. But according to Lars Baltzer nature has always signaled that this should work.

- The human growth factor hGH uses 35 amino acids to bind to its receptor, but it turns out that only six of them are critical. The rest can be replaced without significantly changing the function. There’s really nothing very special about placing a general peptide on a small molecule, but nobody has done it before, he says.

In this study the peptide was successfully bound to the inflammation marker CRP, which is an indicator of a risk of premature death in heart patients, among other things. Several other studies are underway and are proving to be equally successful.

These findings are of great importance to industry, and several large companies have shown their interest. The spin-out company that was previously formed out of Baltzer’s research team is now going to further develop the concept to be able to help the drug industry determine at a considerably earlier stage than today whether a drug candidate is worth pursuing or not.

For more information, please contact Lars Baltzer, mobile phone: +46 (0)706-482 595.

Uppsala universitet - kvalitet, kunskap och kreativitet sedan 1477. Forskning i världsklass och högklassig utbildning till global nytta för samhälle, näringsliv och kultur. Uppsala universitet är ett av norra Europas högst rankade lärosäten. www.uu.se

Anneli Waara | Uppsala universitet
Further information:
http://www.uu.se

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>