Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brandeis study shows economic impact of dengue virus in Americas

08.02.2011
Researchers hope to spur investment in control strategies

Dengue illness, the most common mosquito-borne viral disease in the world, has expanded from its Southeast Asian origins and is resurgent in countries such as Argentina, Chile and the continental United States.

The economic burden of dengue (pronounced DENgee) in the Western Hemisphere, according to a new study from Brandeis University researchers published today in the American Journal of Tropical Medicine and Hygiene, is approximately $2.1 billion per year. This surpasses the loss from other viral illnesses on a country-by-country basis including human papillomavirus (HPV) the most prevalent sexually transmitted infection, and rotavirus, the primary cause of fatal diarrhea among children worldwide.

According to the study group's estimates, 60 percent of the economic strain caused by dengue is a result of indirect costs — primarily productivity losses affecting households, employers and government expenditures. Direct costs include ambulatory and hospital care.

Dengue fever, the more common dengue illness, causes high fever, joint pain, and severe headache. Dengue hemorrhagic fever, the more severe dengue illness, may put a patient into shock and lead to death. The number of annual dengue infections is now estimated between 50-100 million, with 24,000 deaths, primarily among children.

"In 2009 Florida experienced the first major outbreak in the continental U.S. in over 50 years," said Donald S. Shepard, professor at the Schneider Institutes for Health Policy in the Heller School for Social Policy and Management. "We know first-hand that regardless of where you live, we can all be affected by dengue."

Shepard began researching dengue in 1990 when presented with the opportunity to collaborate with scientist Scott B. Halstead, who then headed up the health program at the Rockefeller Foundation in New York City. Shepard's research, which related the economic burdens and the controlling of dengue, was part of the Disease Control Priorities Project, which was published by the World Bank in 1993.

A decade later, in 2001, Halstead convened a meeting in Korea that gave rise to creating the Pediatric Dengue Vaccine Initiative (PDVI). Shepard contributed to the proposal and to the founding of the PDVI, serving on its Board of Counselors and Executive Committee.

Initially supported by the Bill and Melinda Gates Foundation — through PDVI — subsequent dengue research at Brandeis has been supported by Sanofi Pasteur, a research-based vaccine company based in France. At this time Sanofi Pasteur is the furthest along in developing a dengue vaccine; its product will go into phase 3 clinical trials this year.

"The ultimate goal is controlling the disease," says Shepard.

One moderately effective approach currently in use, he says, includes placing larvacide in water-storage containers, which stops the breeding of the mosquitos that spread the virus. Also under development are methods for sterilizing mosquitoes that carry the disease so future mosquito populations will be smaller.

Yara Halasa, a research associate at the Heller School's Schneider Institute for Health Policy and one of the co-authors with Shepard on the "Economic Impact of Dengue Illness in the Americas," has been involved with the dengue project for three years. A native of Jordan, Halasa's passion for understanding the impact of disease began when writing about the subject in her native country.

"Understanding the economic impact of a disease is an important tool to assist policy makers in understanding the social as well as the medical impact. This is a great methodology that can be used for any disease," said Halasa, who is also a dentist and has been working with Shepard since 2008.

Dengue is classified by the World Health Organization as among "Neglected Tropical Diseases," meaning it is prevalent in the tropics, yet has not received attention commensurate with its burden like other diseases such as malaria. Shepard says he feels it has been largely neglected by policy makers "because it affects the tropics, and since many policymakers live in temperate climates, the disease doesn't come to their back door."

It's also a disease, he says, in which there are promising options for control.

"Technologies need resources and economic analysis quantifies the burden of the disease in human and economic terms," says Shepard. "The studies show how much societies could save from effective control strategies."

The hope is that these analyses will help policy makers decide to invest the resources needed to develop and implement effective measures.

Shepard says that he's optimistic that a vaccine will come into widespread use in the coming years as phase 3 trials are beginning in a number of locations around the world and Sanofi Pasteur is currently building a large production plant in France to be ready when the vaccine is introduced.

"It was a long shot 20 years ago when I started working on this disease, but it's becoming much closer now," says Shepard.

Shepard has been involved with a number of studies on the economics of vaccines. In some cases the technologies already existed and the research aided more widespread dissemination. For example, he led an evaluation in Ecuador that found that its mass campaigns were cost-effective in saving lives through increasing vaccination coverage. Another study showed that despite the higher price of a vaccine that protected against more diseases, incorporating hepatitis B or hemophilus influenza type B (HiB) into the basic childhood DTP vaccine (diphtheria, pertussis and tetanus) was economically advantageous due to higher coverage, savings in personnel time, and less discomfort by children.

"We know first-hand that regardless of where you live, we are all affected by dengue," says Shepard. "At the Heller School, we lost a remarkable graduate, Mironda Heston, who contracted dengue while working in Haiti. In her memory, we are extremely dedicated and proud to contribute to a better understanding of this awful virus in hopes to better control it."

Susan Chaityn Lebovits | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>