Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brandeis study shows economic impact of dengue virus in Americas

Researchers hope to spur investment in control strategies

Dengue illness, the most common mosquito-borne viral disease in the world, has expanded from its Southeast Asian origins and is resurgent in countries such as Argentina, Chile and the continental United States.

The economic burden of dengue (pronounced DENgee) in the Western Hemisphere, according to a new study from Brandeis University researchers published today in the American Journal of Tropical Medicine and Hygiene, is approximately $2.1 billion per year. This surpasses the loss from other viral illnesses on a country-by-country basis including human papillomavirus (HPV) the most prevalent sexually transmitted infection, and rotavirus, the primary cause of fatal diarrhea among children worldwide.

According to the study group's estimates, 60 percent of the economic strain caused by dengue is a result of indirect costs — primarily productivity losses affecting households, employers and government expenditures. Direct costs include ambulatory and hospital care.

Dengue fever, the more common dengue illness, causes high fever, joint pain, and severe headache. Dengue hemorrhagic fever, the more severe dengue illness, may put a patient into shock and lead to death. The number of annual dengue infections is now estimated between 50-100 million, with 24,000 deaths, primarily among children.

"In 2009 Florida experienced the first major outbreak in the continental U.S. in over 50 years," said Donald S. Shepard, professor at the Schneider Institutes for Health Policy in the Heller School for Social Policy and Management. "We know first-hand that regardless of where you live, we can all be affected by dengue."

Shepard began researching dengue in 1990 when presented with the opportunity to collaborate with scientist Scott B. Halstead, who then headed up the health program at the Rockefeller Foundation in New York City. Shepard's research, which related the economic burdens and the controlling of dengue, was part of the Disease Control Priorities Project, which was published by the World Bank in 1993.

A decade later, in 2001, Halstead convened a meeting in Korea that gave rise to creating the Pediatric Dengue Vaccine Initiative (PDVI). Shepard contributed to the proposal and to the founding of the PDVI, serving on its Board of Counselors and Executive Committee.

Initially supported by the Bill and Melinda Gates Foundation — through PDVI — subsequent dengue research at Brandeis has been supported by Sanofi Pasteur, a research-based vaccine company based in France. At this time Sanofi Pasteur is the furthest along in developing a dengue vaccine; its product will go into phase 3 clinical trials this year.

"The ultimate goal is controlling the disease," says Shepard.

One moderately effective approach currently in use, he says, includes placing larvacide in water-storage containers, which stops the breeding of the mosquitos that spread the virus. Also under development are methods for sterilizing mosquitoes that carry the disease so future mosquito populations will be smaller.

Yara Halasa, a research associate at the Heller School's Schneider Institute for Health Policy and one of the co-authors with Shepard on the "Economic Impact of Dengue Illness in the Americas," has been involved with the dengue project for three years. A native of Jordan, Halasa's passion for understanding the impact of disease began when writing about the subject in her native country.

"Understanding the economic impact of a disease is an important tool to assist policy makers in understanding the social as well as the medical impact. This is a great methodology that can be used for any disease," said Halasa, who is also a dentist and has been working with Shepard since 2008.

Dengue is classified by the World Health Organization as among "Neglected Tropical Diseases," meaning it is prevalent in the tropics, yet has not received attention commensurate with its burden like other diseases such as malaria. Shepard says he feels it has been largely neglected by policy makers "because it affects the tropics, and since many policymakers live in temperate climates, the disease doesn't come to their back door."

It's also a disease, he says, in which there are promising options for control.

"Technologies need resources and economic analysis quantifies the burden of the disease in human and economic terms," says Shepard. "The studies show how much societies could save from effective control strategies."

The hope is that these analyses will help policy makers decide to invest the resources needed to develop and implement effective measures.

Shepard says that he's optimistic that a vaccine will come into widespread use in the coming years as phase 3 trials are beginning in a number of locations around the world and Sanofi Pasteur is currently building a large production plant in France to be ready when the vaccine is introduced.

"It was a long shot 20 years ago when I started working on this disease, but it's becoming much closer now," says Shepard.

Shepard has been involved with a number of studies on the economics of vaccines. In some cases the technologies already existed and the research aided more widespread dissemination. For example, he led an evaluation in Ecuador that found that its mass campaigns were cost-effective in saving lives through increasing vaccination coverage. Another study showed that despite the higher price of a vaccine that protected against more diseases, incorporating hepatitis B or hemophilus influenza type B (HiB) into the basic childhood DTP vaccine (diphtheria, pertussis and tetanus) was economically advantageous due to higher coverage, savings in personnel time, and less discomfort by children.

"We know first-hand that regardless of where you live, we are all affected by dengue," says Shepard. "At the Heller School, we lost a remarkable graduate, Mironda Heston, who contracted dengue while working in Haiti. In her memory, we are extremely dedicated and proud to contribute to a better understanding of this awful virus in hopes to better control it."

Susan Chaityn Lebovits | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>