Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain waves show learning to read does not end in 4th grade, contrary to popular theory

21.07.2014

Teachers-in-training have long been taught that fourth grade is when students stop learning to read and start reading to learn.

But a new Dartmouth study in the journal Developmental Science tested the theory by analyzing brain waves and found that fourth-graders do not experience a change in automatic word processing, a crucial component of the reading shift theory. Instead, some types of word processing become automatic before fourth grade, while others don't switch until after fifth.

The findings mean that teachers at all levels of elementary school must think of themselves as reading instructors, said the study's author, Associate Professor of Education Donna Coch.

"Until now, we lacked neurological evidence about the supposed fourth-grade shift," said Coch, also principal investigator for Dartmouth's Reading Brains Lab.

"The theory developed from behavioral evidence, and as a result of it, some teachers in fifth and sixth grade have not thought of themselves as reading instructors. Now we can see from brain waves that students in those grades are still learning to process words automatically; their neurological reading system is not yet adult-like."

Automatic word processing is the brain's ability to determine whether a group of symbols constitutes a word within milliseconds, without the brain's owner realizing the process is taking place.

To test how automatic word processing develops, Coch placed electrode caps on the heads of third-, fourth-, and fifth-graders, as well as college students. She had her test subjects view a screen that displayed a mix of real English words (such as "bed"), pseudo-words (such as "bem"), strings of letters (such as "mbe"), and strings of meaningless symbols one at a time. The setup allowed her to see how the subjects' brains reacted to each kind of stimulus within milliseconds. In other words, she could watch their automatic word processing.

Next, Coch gave the participants a written test, in which they were asked to circle the real words in a list that also contained pseudo-words, strings of letters, and strings of meaningless symbols. This task was designed to test the participants' conscious word processing, a much slower procedure.

Interestingly, most of the 96 participants got a nearly perfect score on the written test, showing that their conscious brains knew the difference between words and non-words.

However, the electrode cap revealed that only the college students processed meaningless symbols differently than real words. The third-, fourth-, and fifth-graders' brains reacted to the meaningless symbols the same way they reacted to common English words.

"This tells us that, at least through the fifth grade, even children who read well are letting stimuli into the neural word processing system that more mature readers do not," Coch said. "Their brains are processing strings of meaningless symbols as if they were words, perhaps in case they turn out to be real letters. In contrast, by college, students have learned not to process strings of meaningless symbols as words, saving their brains precious time and energy."

The phenomenon is evidence that young readers do not fully develop automatic word processing skills until after fifth grade, which contradicts the fourth-grade reading shift theory.

The brain waves also showed that the third-, fourth-, and fifth-graders processed real words, psuedowords, and letter strings similarly to college students, suggesting that some automatic word processing begins before the fourth grade, and even before the third grade, also contradicting the reading shift theory.

"There is value to the theory of the fourth grade shift in that it highlights how reading skills and abilities develop at different times," Coch said. "But the neural data suggest that teachers should not expect their fourth-graders, or even their fifth-graders, to be completely automatic, adult-like readers."

###

The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the National Institutes of Health.

Professor Coch is available to comment at Donna.J.Coch@Dartmouth.edu or (603) 646-3282.

Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Shea Drefs | Eurek Alert!

Further reports about: Brain conscious electrode evidence neural neurological processing waves

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>