Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain waves show learning to read does not end in 4th grade, contrary to popular theory


Teachers-in-training have long been taught that fourth grade is when students stop learning to read and start reading to learn.

But a new Dartmouth study in the journal Developmental Science tested the theory by analyzing brain waves and found that fourth-graders do not experience a change in automatic word processing, a crucial component of the reading shift theory. Instead, some types of word processing become automatic before fourth grade, while others don't switch until after fifth.

The findings mean that teachers at all levels of elementary school must think of themselves as reading instructors, said the study's author, Associate Professor of Education Donna Coch.

"Until now, we lacked neurological evidence about the supposed fourth-grade shift," said Coch, also principal investigator for Dartmouth's Reading Brains Lab.

"The theory developed from behavioral evidence, and as a result of it, some teachers in fifth and sixth grade have not thought of themselves as reading instructors. Now we can see from brain waves that students in those grades are still learning to process words automatically; their neurological reading system is not yet adult-like."

Automatic word processing is the brain's ability to determine whether a group of symbols constitutes a word within milliseconds, without the brain's owner realizing the process is taking place.

To test how automatic word processing develops, Coch placed electrode caps on the heads of third-, fourth-, and fifth-graders, as well as college students. She had her test subjects view a screen that displayed a mix of real English words (such as "bed"), pseudo-words (such as "bem"), strings of letters (such as "mbe"), and strings of meaningless symbols one at a time. The setup allowed her to see how the subjects' brains reacted to each kind of stimulus within milliseconds. In other words, she could watch their automatic word processing.

Next, Coch gave the participants a written test, in which they were asked to circle the real words in a list that also contained pseudo-words, strings of letters, and strings of meaningless symbols. This task was designed to test the participants' conscious word processing, a much slower procedure.

Interestingly, most of the 96 participants got a nearly perfect score on the written test, showing that their conscious brains knew the difference between words and non-words.

However, the electrode cap revealed that only the college students processed meaningless symbols differently than real words. The third-, fourth-, and fifth-graders' brains reacted to the meaningless symbols the same way they reacted to common English words.

"This tells us that, at least through the fifth grade, even children who read well are letting stimuli into the neural word processing system that more mature readers do not," Coch said. "Their brains are processing strings of meaningless symbols as if they were words, perhaps in case they turn out to be real letters. In contrast, by college, students have learned not to process strings of meaningless symbols as words, saving their brains precious time and energy."

The phenomenon is evidence that young readers do not fully develop automatic word processing skills until after fifth grade, which contradicts the fourth-grade reading shift theory.

The brain waves also showed that the third-, fourth-, and fifth-graders processed real words, psuedowords, and letter strings similarly to college students, suggesting that some automatic word processing begins before the fourth grade, and even before the third grade, also contradicting the reading shift theory.

"There is value to the theory of the fourth grade shift in that it highlights how reading skills and abilities develop at different times," Coch said. "But the neural data suggest that teachers should not expect their fourth-graders, or even their fifth-graders, to be completely automatic, adult-like readers."


The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the National Institutes of Health.

Professor Coch is available to comment at or (603) 646-3282.

Dartmouth has TV and radio studios available for interviews. For more information, visit:

Shea Drefs | Eurek Alert!

Further reports about: Brain conscious electrode evidence neural neurological processing waves

More articles from Studies and Analyses:

nachricht Climate study finds evidence of global shift in the 1980s
26.11.2015 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Network analysis shows systemic risk in mineral markets
16.11.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>