Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain study could lead to new understanding of depression

25.08.2008
Brain scientists have moved a step closer to understanding why some people may be more prone to depression than others.

Dr Roland Zahn, a clinical neuroscientist in The University of Manchester’s School of Psychological Sciences, and his colleagues have identified how the brain links knowledge about social behaviour with moral sentiments, such as pride and guilt.

The study, carried out at the National Institutes of Neurological Disorders and Stroke in the US with Dr Jordan Grafman, chief of the Cognitive Neuroscience Section, and Dr Jorge Moll, now at the LABS-D'Or Center for Neuroscience in Rio de Janeiro, Brazil, used functional magnetic resonance imaging (fMRI) to scan the brains of 29 healthy individuals while they considered certain social behaviours.

The findings – published in the journal Cerebral Cortex – for the first time chart the regions of the brain that interact to link knowledge about socially appropriate behaviour with different moral feelings, depending on the context in which the social behaviour occurs.

“During everyday life we constantly evaluate social behaviour and this largely affects how we feel about ourselves and other people,” said Dr Zahn. “But the way we store and use information about our own and other people’s social behaviour are not well understood.

“This latest study used functional brain imaging to identify the circuits in the brain that underpin our ability to differentiate social behaviour that conforms to our values from behaviour that does not.”

The team observed that social behaviour not conforming to an individual’s values evoked feelings of anger when carried out by another person or feelings of guilt when the behaviour stemmed from the individuals themselves.

The fMRI scans of each volunteer could then be analysed to see which parts of the brain were activated for the different types of feeling being expressed. Of particular interest to Dr Zahn were the brain scans relating to feelings of guilt, as these have particular relevance to his current work on depression.

“The most distinctive feature of depressive disorders is an exaggerated negative attitude to oneself, which is typically accompanied by feelings of guilt,” he said.

“Now that we understand how the brains of healthy individuals respond to feelings of guilt, we hope to be able to better understand why and where there are differences in brain activity in people suffering from, or prone to, depression.

“The brain region we have identified to be associated with proneness to guilt has been shown to be abnormally active in patients with severe depression in several previous studies, but until now its involvement in guilt had been unknown."

“By translating these basic cognitive neuroscience insights into clinical research we now have the potential to discover new key functional anatomical characteristics of the brain that may lie behind depressive disorders.

“The results will hopefully make an important contribution to our understanding of the causes of depression that will ultimately allow new approaches to find better treatments and prevention.”

The current clinical study, being carried out with professors Matthew Lambon-Ralph, Bill Deakin and Alistair Burns at The University of Manchester, will last four years.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: Depression depressive disorders fMRI fMRI scans

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>