Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain study could lead to new understanding of depression

Brain scientists have moved a step closer to understanding why some people may be more prone to depression than others.

Dr Roland Zahn, a clinical neuroscientist in The University of Manchester’s School of Psychological Sciences, and his colleagues have identified how the brain links knowledge about social behaviour with moral sentiments, such as pride and guilt.

The study, carried out at the National Institutes of Neurological Disorders and Stroke in the US with Dr Jordan Grafman, chief of the Cognitive Neuroscience Section, and Dr Jorge Moll, now at the LABS-D'Or Center for Neuroscience in Rio de Janeiro, Brazil, used functional magnetic resonance imaging (fMRI) to scan the brains of 29 healthy individuals while they considered certain social behaviours.

The findings – published in the journal Cerebral Cortex – for the first time chart the regions of the brain that interact to link knowledge about socially appropriate behaviour with different moral feelings, depending on the context in which the social behaviour occurs.

“During everyday life we constantly evaluate social behaviour and this largely affects how we feel about ourselves and other people,” said Dr Zahn. “But the way we store and use information about our own and other people’s social behaviour are not well understood.

“This latest study used functional brain imaging to identify the circuits in the brain that underpin our ability to differentiate social behaviour that conforms to our values from behaviour that does not.”

The team observed that social behaviour not conforming to an individual’s values evoked feelings of anger when carried out by another person or feelings of guilt when the behaviour stemmed from the individuals themselves.

The fMRI scans of each volunteer could then be analysed to see which parts of the brain were activated for the different types of feeling being expressed. Of particular interest to Dr Zahn were the brain scans relating to feelings of guilt, as these have particular relevance to his current work on depression.

“The most distinctive feature of depressive disorders is an exaggerated negative attitude to oneself, which is typically accompanied by feelings of guilt,” he said.

“Now that we understand how the brains of healthy individuals respond to feelings of guilt, we hope to be able to better understand why and where there are differences in brain activity in people suffering from, or prone to, depression.

“The brain region we have identified to be associated with proneness to guilt has been shown to be abnormally active in patients with severe depression in several previous studies, but until now its involvement in guilt had been unknown."

“By translating these basic cognitive neuroscience insights into clinical research we now have the potential to discover new key functional anatomical characteristics of the brain that may lie behind depressive disorders.

“The results will hopefully make an important contribution to our understanding of the causes of depression that will ultimately allow new approaches to find better treatments and prevention.”

The current clinical study, being carried out with professors Matthew Lambon-Ralph, Bill Deakin and Alistair Burns at The University of Manchester, will last four years.

Aeron Haworth | alfa
Further information:

Further reports about: Depression depressive disorders fMRI fMRI scans

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>