Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans show we take risks because we can't stop ourselves

05.02.2014
When we engage in risky behaviors, such as drunk driving or unsafe sex, a strong desire might not be the only culprit

A new study correlating brain activity with how people make decisions suggests that when individuals engage in risky behavior, such as drunk driving or unsafe sex, it's probably not because their brains' desire systems are too active, but because their self-control systems are not active enough.


When these brain regions (mostly associated with control) aren't active enough, we make risky choices. Z-statistic corresponds to predictive ability, yellow being the most predictive regions.

Credit: Sarah Helfinstein/U. of Texas at Austin.

This might have implications for how health experts treat mental illness and addiction or how the legal system assesses a criminal's likelihood of committing another crime.

Researchers from The University of Texas at Austin, UCLA and elsewhere analyzed data from 108 subjects who sat in a magnetic resonance imaging (MRI) scanner — a machine that allows researchers to pinpoint brain activity in vivid, three-dimensional images — while playing a video game that simulates risk-taking.

The researchers used specialized software to look for patterns of activity across the whole brain that preceded a person's making a risky choice or a safe choice in one set of subjects. Then they asked the software to predict what other subjects would choose during the game based solely on their brain activity. The software accurately predicted people's choices 71 percent of the time.

"These patterns are reliable enough that not only can we predict what will happen in an additional test on the same person, but on people we haven't seen before," said Russ Poldrack, director of UT Austin's Imaging Research Center and professor of psychology and neuroscience.

When the researchers trained their software on much smaller regions of the brain, they found that just analyzing the regions typically involved in executive functions such as control, working memory and attention was enough to predict a person's future choices. Therefore, the researchers concluded, when we make risky choices, it is primarily because of the failure of our control systems to stop us.

"We all have these desires, but whether we act on them is a function of control," says Sarah Helfinstein, a postdoctoral researcher at UT Austin and lead author of the study that appears online this week in the journal Proceedings of the National Academy of Sciences.

Helfinstein says that additional research could focus on how external factors, such as peer pressure, lack of sleep or hunger, weaken the activity of our brains' control systems when we contemplate risky decisions.

"If we can figure out the factors in the world that influence the brain, we can draw conclusions about what actions are best at helping people resist risks," said Helfinstein.

To simulate features of real-world risk-taking, the researchers used a video game called the Balloon Analogue Risk Task (BART) that past research has shown correlates well with self-reported risk-taking such as drug and alcohol use, smoking, gambling, driving without a seatbelt, stealing and engaging in unprotected sex.

While playing the BART, the subject sees a balloon on the screen and is asked to make either a risky choice (inflate the balloon a little and earn a few cents) or a safe choice (stop the round and "cash out," keeping whatever money was earned up to that point). Sometimes inflating the balloon causes it to burst and the player loses all the cash earned from that round. After each successful balloon inflation, the game continues with the chance of earning another standard-sized reward or losing an increasingly large amount. Many health-relevant risky decisions share this same structure, such as when deciding how many alcoholic beverages to drink before driving home or how much one can experiment with drugs or cigarettes before developing an addiction.

The data for this study came from the Consortium for Neuropsychiatric Phenomics at UCLA, which recruited adults from the Los Angeles area for researchers to examine differences in response inhibition and working memory between healthy adults and patients diagnosed with bipolar disorder, schizophrenia, or adult attention deficit hyperactivity disorder (ADHD). Only data collected from healthy participants were included in the present analyses.

Other researchers on the study include: Tom Schonberg and Jeanette A. Mumford at The University of Texas at Austin; Katherine H. Karlsgodt at Zucker Hillside Hospital and the Feinstein Institute for Medical Research; Eliza Congdon, Fred W. Sabb, Edythe D. London and Robert M. Bilder at UCLA; and Tyrone D. Cannon at Yale University.

This work was supported by the National Institutes of Health, the Consortium for Neuropsychiatric Phenomics and the Tennenbaum Center for the Biology of Creativity.

Link to the paper "Predicting risky choices from brain activity patterns": http://www.pnas.org/content/early/2014/01/29/1321728111.full.pdf+html

Marc Airhart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>