Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans show effects of Parkinson's drug

01.12.2010
Study has implications for testing new drugs

Neuroscientists using a new brain imaging technique could see an investigational drug for Parkinson's disease get into a patient's brain and affect blood flow in several key structures, an indicator the drug may be effective.

The study represents the first use of the technique in humans — called perfusion MRI — to test a drug still in development, the lead investigator says. In the future, similar brain scans could speed the development of new drugs and help clinicians learn whether established drugs are working, according to the researchers at Washington University School of Medicine in St. Louis.

The research team reports those findings Dec. 1 in The Journal of Neuroscience.

Perfusion MRI allowed the researchers to measure blood flow in the brain and even to determine the precise blood level of the drug, SYN115, needed to affect particular regions of the brain. They were able to demonstrate that the drug may be a viable therapy when combined with levodopa (L-Dopa), currently the most effective treatment for patients with Parkinson's disease.

The study, a Phase 2 clinical trial, used two doses of the investigational drug. Its safety already had been tested in healthy volunteers. The goal was to determine what might be a reasonable dose for a larger clinical trial in Parkinson's disease.

Unlike L-Dopa, which works through the brain's dopamine system, SYN115 interacts with the brain's adenosine A2a receptor. That receptor can modify the effects of the neurotransmitters glutamate and dopamine and is thought to be a potential therapeutic target not only for Parkinson's disease but also for insomnia, pain, drug addiction and depression.

"This study is important because it demonstrates this may be a useful approach for studying investigational drugs," says lead investigator Kevin J. Black, MD. "We were able to determine both that the drug gets into the brain to exert its effects and that it has a larger effect at a higher dose."

Black, a professor of psychiatry, of neurology, of neurobiology and of radiology, and his team used a new, FDA-approved type of perfusion MRI called arterial spin labeling (ASL), which uses MRI scans to measure blood flow in the brain. A similar technique uses positron emission tomography (PET) scans. Older forms of MRI scanning could not provide scientists with similar functional measurements.

Although PET scans can measure many of the same things, a large number of medical centers don't have PET scanners, and depending how it's done, PET may cost more, Black explains. The previous method of measuring blood flow with functional MRI is called BOLD scanning (Blood Oxygen Level Dependent).

"That's a wonderful technique for watching someone's brain respond to a question or a task or to compare blood flow changes over short periods of time," he says. "But it's not very helpful in determining the effects of drugs that might not influence the brain for 30 minutes or an hour. The ASL method works much better at comparing brain activity over that longer time period."

SYN115 probably is not a candidate to replace L-Dopa, Black says, but if used with L-Dopa, he believes it may boost that drug's therapeutic benefit and reduce its side effects. His team tested 21 Parkinson's patients, comparing ASL functional MRI scans among patients who took only L-Dopa and those who took L-Dopa combined with either 20 milligrams or 60 milligrams of SYN115. Patients who received SYN115 experienced decreased blood flow in specific brain structures, with the biggest decreases occurring in the thalamus.

"The nerve cells that send signals to the thalamus are mostly inhibitory in nature," Black says. "So we believe these decreases represent the brain taking its foot off of the brake pedal. The more drug in the system, the less 'braking' influence there is on the thalamus, which would then allow the thalamus to send positive signals to the brain's cortex, where movements are initiated."

Decreases in blood flow were more significant in subjects who had higher blood levels of the investigational drug. More study will be required to learn whether even higher doses might have a bigger influence on brain activity, Black says. It also will be important, he adds, to determine whether the decreased blood flow seen in the MRI scans will ease clinical symptoms of Parkinson's disease, such as tremors, weakness, stiffness and difficulty walking.

But it is clear the drug is influencing brain function, he says. Even if this drug does not have a big impact, the method his team used to study the drug could influence future pharmaceutical research.

"This could shorten the time it takes to get medications to market because you don't need as many patients or as much time to determine whether a drug has an effect in the brain," he says. "This imaging technique could make it possible to significantly shorten the time from drug discovery to the launch of large, clinical studies to learn whether it truly is effective."

And the technique has implications beyond Parkinson's disease.

"One example might be depression," Black says. "Antidepressant drugs work for some people and not for others. The drugs exert many effects within the first two hours, but often they don't begin to relieve depression symptoms for a month or more. Theoretically, this imaging test could determine within hours whether we're going to help patients, rather than waiting weeks to see if the drug is alleviating depression."

Black KJ, Koller JM, Campbell MC, Gusnard DA, Bandak SI. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. The Journal of Neuroscience, vol. 30(48). pp. 16284-16292. Dec. 1, 2010.

This research was supported by a Synosia Therapeutics contract and by grants from the National Institutes of Health, the American Parkinson Disease Association's Advanced Research Center for Parkinson Disease at Washington University and the Greater St. Louis Chapter of the American Parkinson Disease Association.

Kevin J. Black and Meghan C. Campbell performed personal consulting for Synosia Therapeutics, receiving payment of less than $10,000.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>