Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can brain scans read your mind?

27.07.2009
Study by UCLA, Rutgers neuroscientists provides new insights

"If you could read my mind, love, what a tale my thoughts could tell" —Gordon Lightfoot

Can neuroscience read people's minds? Some researchers, and some new businesses, are banking on a brain imaging technique known as functional magnetic resonance imaging (fMRI) to reveal hidden thoughts, such as lies, truths or deep desires.

New research by neuroscientists at UCLA and Rutgers University provides evidence that fMRI can be used in certain circumstances to determine what a person is thinking. At the same time, the research suggests that highly accurate "mind reading" using fMRI is still far from reality. The research is scheduled to be published in the October 2009 issue of the journal Psychological Science.

In the study, 130 healthy young adults had their brains scanned in an MRI scanner at UCLA's Ahmanson–Lovelace Brain Mapping Center while they performed one of eight mental tasks, including reading words aloud, saying whether pairs of words rhyme, counting the number of tones they heard, pressing buttons at certain cues and making monetary decisions. The scientists calculated how accurately they could tell from the fMRI brain scans which mental task each participant was engaged in.

"We take 129 of the subjects and apply a statistical tool to learn the differences among people doing these eight tasks, then we take the 130th person and try to tell which of the tasks this person was doing; we do that for every person," said lead study author Russell Poldrack, a professor of psychology who holds UCLA's Wendell Jeffrey and Bernice Wenzel Term Chair in Behavioral Neuroscience.

"It turns out that we can predict quite well which of these eight tasks they are doing," he said. "If we were just guessing, we would get it right about 13 percent of the time. We get it right about 80 percent of the time with our statistical tool. It's not perfect, but it is quite good — but not nearly good enough to be admissible in court, for example.

"Our study suggests that the kinds of things that some people have talked about in terms of mind reading are probably still pretty far off," Poldrack said. "If we are only 80 percent accurate with eight very different thoughts and we want to figure out what you're thinking out of millions of possible thoughts, we're still very far away from achieving that."

Poldrack's study is one of the first to show that neuroscientists can make these kinds of predictions on new people, whose brain patterns the researchers have never seen before. In most previous studies, researchers made predictions about a person's mental state after having already studied that person's brain to understand its particular patterns.

"Our study indicates that different people's brains work very similarly," Poldrack said. "We often tend to focus on how different each person's brain is, but our study suggests that most healthy people's brains work in very similar ways; otherwise, this approach wouldn't work.

"We can tell a lot about what you're thinking using functional MRI, even though we have never seen your brain before," he said. "However, it is limited in that there are only eight things that we are letting you think about in this study."

The tools used in this research come from a scientific field known as machine learning, which is related to statistics and computer science, said Poldrack, who noted that this technology is heavily employed by companies like Amazon to predict what people will buy based on their previous purchases.

Nearly 10 years ago, neuroscientists showed that if they take brain images with fMRI while people look at different objects, such as faces, houses and chairs, they can use the tools of machine learning to predict with high accuracy what object the subjects are looking at — if the scientists first know from studying brain activity how each subject's brain responds to those objects.

Co-authors on the research are Yaroslav Halchenko, a graduate student in psychology at Rutgers University, and Stephen Jose Hanson, a faculty member in psychology at Rutgers University.

The research was funded by the U.S. Office of Naval Research and the James S. McDonnell Foundation.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Four alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>