Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can brain scans read your mind?

27.07.2009
Study by UCLA, Rutgers neuroscientists provides new insights

"If you could read my mind, love, what a tale my thoughts could tell" —Gordon Lightfoot

Can neuroscience read people's minds? Some researchers, and some new businesses, are banking on a brain imaging technique known as functional magnetic resonance imaging (fMRI) to reveal hidden thoughts, such as lies, truths or deep desires.

New research by neuroscientists at UCLA and Rutgers University provides evidence that fMRI can be used in certain circumstances to determine what a person is thinking. At the same time, the research suggests that highly accurate "mind reading" using fMRI is still far from reality. The research is scheduled to be published in the October 2009 issue of the journal Psychological Science.

In the study, 130 healthy young adults had their brains scanned in an MRI scanner at UCLA's Ahmanson–Lovelace Brain Mapping Center while they performed one of eight mental tasks, including reading words aloud, saying whether pairs of words rhyme, counting the number of tones they heard, pressing buttons at certain cues and making monetary decisions. The scientists calculated how accurately they could tell from the fMRI brain scans which mental task each participant was engaged in.

"We take 129 of the subjects and apply a statistical tool to learn the differences among people doing these eight tasks, then we take the 130th person and try to tell which of the tasks this person was doing; we do that for every person," said lead study author Russell Poldrack, a professor of psychology who holds UCLA's Wendell Jeffrey and Bernice Wenzel Term Chair in Behavioral Neuroscience.

"It turns out that we can predict quite well which of these eight tasks they are doing," he said. "If we were just guessing, we would get it right about 13 percent of the time. We get it right about 80 percent of the time with our statistical tool. It's not perfect, but it is quite good — but not nearly good enough to be admissible in court, for example.

"Our study suggests that the kinds of things that some people have talked about in terms of mind reading are probably still pretty far off," Poldrack said. "If we are only 80 percent accurate with eight very different thoughts and we want to figure out what you're thinking out of millions of possible thoughts, we're still very far away from achieving that."

Poldrack's study is one of the first to show that neuroscientists can make these kinds of predictions on new people, whose brain patterns the researchers have never seen before. In most previous studies, researchers made predictions about a person's mental state after having already studied that person's brain to understand its particular patterns.

"Our study indicates that different people's brains work very similarly," Poldrack said. "We often tend to focus on how different each person's brain is, but our study suggests that most healthy people's brains work in very similar ways; otherwise, this approach wouldn't work.

"We can tell a lot about what you're thinking using functional MRI, even though we have never seen your brain before," he said. "However, it is limited in that there are only eight things that we are letting you think about in this study."

The tools used in this research come from a scientific field known as machine learning, which is related to statistics and computer science, said Poldrack, who noted that this technology is heavily employed by companies like Amazon to predict what people will buy based on their previous purchases.

Nearly 10 years ago, neuroscientists showed that if they take brain images with fMRI while people look at different objects, such as faces, houses and chairs, they can use the tools of machine learning to predict with high accuracy what object the subjects are looking at — if the scientists first know from studying brain activity how each subject's brain responds to those objects.

Co-authors on the research are Yaroslav Halchenko, a graduate student in psychology at Rutgers University, and Stephen Jose Hanson, a faculty member in psychology at Rutgers University.

The research was funded by the U.S. Office of Naval Research and the James S. McDonnell Foundation.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Four alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>