Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans detect early signs of autism

28.06.2012
A new study shows significant differences in brain development in high-risk infants who develop autism starting as early as age 6 months. The findings published in the American Journal of Psychiatry reveal that this abnormal brain development may be detected before the appearance of autism symptoms in an infant’s first year of life. Autism is typically diagnosed around the age of 2 or 3.

The study offers new clues for early diagnosis, which is key, as research suggests that the symptoms of autism - problems with communication, social interaction and behavior - can improve with early intervention.

“For the first time, we have an encouraging finding that enables the possibility of developing autism risk biomarkers prior to the appearance of symptoms, and in advance of our current ability to diagnose autism,” says co-investigator Dr. Alan Evans at the Montreal Neurological Institute and Hospital – the Neuro, McGill University, which is the Data Coordinating Centre for the study.

"Infancy is a time when the brain is being organized and connections are developing rapidly,” says Dr. Evans. “Our international research team was able to detect differences in the wiring by six months of age in those children who went on to develop autism. The difference between high-risk infants that developed autism and those that did not was specifically in white matter tract development – fibre pathways that connect brain regions.” The study followed 92 infants from 6 months to age 2. All were considered at high-risk for autism, as they had older siblings with the developmental disorder. Each infant had a special type of MRI scan, known as diffusion tensor imaging, at 6 months and a behavioral assessment at 24 months. The majority also had additional scans at either or both 12 and 24 months.

At 24 months, 30% of infants in the study were diagnosed with autism. White matter tract development for 12 of the 15 tracts examined differed significantly between the infants that developed autism and those who did not. Researchers evaluated fractional anisotropy (FA), a measure of white matter organization based on the movement of water through tissue. Differences in FA values were greatest at 6 and 24 months. Early in the study, infants who developed autism showed elevated FA values along these tracts, which decreased over time, so that by 24 months autistic infants had lower FA values than infants without autism.

The study characterizes the dynamic age-related brain and behavior changes underlying autism – vital for developing tools to aid autistic children and their families. This is the latest finding from the on-going Infant Brain Imaging Study (IBIS), which is funded by the National Institutes of Health (NIH) and brings together the expertise of a network of researchers from institutes across North America. The IBIS study is headquartered at the University of North Carolina, and The Neuro is the Data Coordinating Centre where all IBIS data is centralized.

The IBIS Network is supported by the NIH, Autism Speaks and the Simons Foundation.

About The Neuro
The Montreal Neurological Institute and Hospital — the Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, the Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit theneuro.com.
Contact:
Anita KarNeuro

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>