Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Scan Study Shows Cocaine Abusers Can Control Cravings

01.12.2009
New treatments aimed at strengthening inhibitory control could help prevent relapse

When asked to inhibit their response to a “cocaine-cues” video, active cocaine abusers were, on average, able to suppress activity in brain regions linked to drug craving, according to a new study at the U.S. Department of Energy’s Brookhaven National Laboratory. The results, to be published in an upcoming issue of NeuroImage, suggest that clinical interventions designed to strengthen these inhibitory responses could help cocaine abusers stop using drugs and avoid relapse.

“Exposure to drugs or stimuli associated with using drugs is one of the most common factors leading to relapse in drug-addicted individuals,” said Nora Volkow, Director of the National Institute on Drug Abuse and lead author on the paper.

“We know from previous studies that drug cues can trigger dramatic changes in the brain that are linked to a strong craving response,” added co-author Gene-Jack Wang, Chair of Brookhaven’s medical department. “This study provides the first evidence that cocaine abusers retain some ability to cognitively inhibit their craving responses to drug-related cues.”

Added Volkow, “Our findings provide enormous hope because they imply that cognitive interventions might be developed to maximize cocaine abusers’ success in blocking the drug-craving response to help them avoid relapse.”

The scientists used a brain-scanning technique called positron emission tomography (PET) and a radioactively “tagged” form of glucose — the brain’s main fuel — to measure brain activity in 24 active cocaine abusers during three different conditions: 1) while subjects simply lay in the scanner with eyes open; 2) while subjects watched a “cocaine-cues” video with scenes simulating the purchase, preparation, and smoking of crack cocaine; and 3) while subjects watched the video but were told to try to inhibit their craving response. Scans were performed in random order and on separate days.

In each scan, the PET camera tracked the radioactive signal from the tagged glucose as it was taken up by various regions of the brain. A stronger signal indicates higher metabolic activity in a particular brain region where more glucose is being used. This technique allows scientists to accurately monitor which brain regions are most active and how that activity changes with time or in response to different situations.

The scientists also monitored the research subjects’ heart rate and blood pressure and asked them to describe their level of craving during the scans. Compared with the baseline condition, the cocaine-cues video triggered increases in brain activity in several brain regions associated with drug craving, as well as increases in research subjects’ self-reports of craving.

When the research subjects were asked to inhibit their response to the video, and those scans were compared with the no-inhibition condition, metabolic activity decreased dramatically in brain regions involved in experiencing and anticipating rewards, and in a part of the brain that plays a role in assigning value, or salience, to different stimuli. During inhibition, research subjects also reported lower levels of craving compared with the no-inhibition video condition.

The researchers say the findings have significant clinical implications:

“Many current drug treatment programs help addicted individuals predict when and where they might be exposed to drug cues so that they can avoid such situations,” Volkow said. “While this is a very useful strategy, in real-word situations, cues may come up in unexpected ways. Our findings suggest that a clinical strategy that trains cocaine abusers to exert greater cognitive control could help them selectively inhibit the craving response whenever and wherever drug cues are encountered — whether expectedly or unexpectedly.”

Because inhibitory control is crucial for regulating emotions and desires, the findings from this study could have implications for other disorders involving loss of behavioral control, such as gambling and obesity.

This study was supported by the intramural program from the National Institutes of Health Intramural Research Program at the National Institute on Alcohol Abuse and Alcoholism. Brookhaven Lab’s infrastructure for PET imaging and radiotracer development also receive support from the DOE Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1026

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>