Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Scan Study Shows Cocaine Abusers Can Control Cravings

01.12.2009
New treatments aimed at strengthening inhibitory control could help prevent relapse

When asked to inhibit their response to a “cocaine-cues” video, active cocaine abusers were, on average, able to suppress activity in brain regions linked to drug craving, according to a new study at the U.S. Department of Energy’s Brookhaven National Laboratory. The results, to be published in an upcoming issue of NeuroImage, suggest that clinical interventions designed to strengthen these inhibitory responses could help cocaine abusers stop using drugs and avoid relapse.

“Exposure to drugs or stimuli associated with using drugs is one of the most common factors leading to relapse in drug-addicted individuals,” said Nora Volkow, Director of the National Institute on Drug Abuse and lead author on the paper.

“We know from previous studies that drug cues can trigger dramatic changes in the brain that are linked to a strong craving response,” added co-author Gene-Jack Wang, Chair of Brookhaven’s medical department. “This study provides the first evidence that cocaine abusers retain some ability to cognitively inhibit their craving responses to drug-related cues.”

Added Volkow, “Our findings provide enormous hope because they imply that cognitive interventions might be developed to maximize cocaine abusers’ success in blocking the drug-craving response to help them avoid relapse.”

The scientists used a brain-scanning technique called positron emission tomography (PET) and a radioactively “tagged” form of glucose — the brain’s main fuel — to measure brain activity in 24 active cocaine abusers during three different conditions: 1) while subjects simply lay in the scanner with eyes open; 2) while subjects watched a “cocaine-cues” video with scenes simulating the purchase, preparation, and smoking of crack cocaine; and 3) while subjects watched the video but were told to try to inhibit their craving response. Scans were performed in random order and on separate days.

In each scan, the PET camera tracked the radioactive signal from the tagged glucose as it was taken up by various regions of the brain. A stronger signal indicates higher metabolic activity in a particular brain region where more glucose is being used. This technique allows scientists to accurately monitor which brain regions are most active and how that activity changes with time or in response to different situations.

The scientists also monitored the research subjects’ heart rate and blood pressure and asked them to describe their level of craving during the scans. Compared with the baseline condition, the cocaine-cues video triggered increases in brain activity in several brain regions associated with drug craving, as well as increases in research subjects’ self-reports of craving.

When the research subjects were asked to inhibit their response to the video, and those scans were compared with the no-inhibition condition, metabolic activity decreased dramatically in brain regions involved in experiencing and anticipating rewards, and in a part of the brain that plays a role in assigning value, or salience, to different stimuli. During inhibition, research subjects also reported lower levels of craving compared with the no-inhibition video condition.

The researchers say the findings have significant clinical implications:

“Many current drug treatment programs help addicted individuals predict when and where they might be exposed to drug cues so that they can avoid such situations,” Volkow said. “While this is a very useful strategy, in real-word situations, cues may come up in unexpected ways. Our findings suggest that a clinical strategy that trains cocaine abusers to exert greater cognitive control could help them selectively inhibit the craving response whenever and wherever drug cues are encountered — whether expectedly or unexpectedly.”

Because inhibitory control is crucial for regulating emotions and desires, the findings from this study could have implications for other disorders involving loss of behavioral control, such as gambling and obesity.

This study was supported by the intramural program from the National Institutes of Health Intramural Research Program at the National Institute on Alcohol Abuse and Alcoholism. Brookhaven Lab’s infrastructure for PET imaging and radiotracer development also receive support from the DOE Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1026

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>