Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain responds same to acute and chronic sleep loss

10.08.2010
Burning the candle at both ends for a week may take an even bigger toll than you thought.

Researchers at the University of Wisconsin-Madison have found that five nights of restricted sleep--four hours a night--affect the brain in a way similar to that seen after acute total sleep deprivation.

The new study in rats, appearing in the current online edition of the Proceedings of the National Academy of Sciences, adds to the growing evidence scientists are accumulating about the negative effects of restricted sleep for both the brain and the body.

"There's a huge amount of interest in sleep restriction in the field today," says Dr. Chiara Cirelli, associate professor of psychiatry at the School of Medicine and Public Health, who led the research.

Many people are sleep restricted, either because they have to or because they choose to be, she says.

"Instead of going to bed when they are tired, like they should, people watch TV and want to have an active social life," she says. "People count on catching up on their sleep on the weekends, but it may not be enough."

This "casual" lack of sleep can be harmful.

"Even relatively mild sleep restriction for several nights can affect an individual's ability to perform cognitive tasks," Cirelli says. "For instance, recent studies in humans have shown that 5 days with only 4 h of sleep/night result in cumulative deficits in vigilance and cognition, and these deficits do not fully recover after one night of sleep, even if 10 hours in bed are allowed. Sleep restriction can also increase resistance to insulin, leading to a risk of diabetes."

Cirelli and her team kept rats awake 20 hours a day over five days while continuously recording the animals' brain waves with a sophisticated EEG as they were asleep and awake. The EEGs measured slow wave activity (SWA), the best marker of an individual's need to sleep as well as the intensity of sleep that follows a period of wakefulness.

"Slow-wave activity reflects the fact that sleep is regulated by homeostasis: in general, the longer we stay awake, the higher is SWA in the subsequent sleep. We knew that this was true after acute total sleep deprivation (for instance when we stay up all night); now we found that this is also true after chronic sleep restriction. " Cirelli notes..

According to the rat cumulative SWA measures, the sleep restriction produced intense recovery sleep following each wake cycle, with both longer and deeper sleep. The more effective the researchers were in keeping the animals awake during those 20 hours, the larger the sleep rebound they saw during the following four hours.

"It was an indirect but powerful indication of how sleepy the animals actually were," Cirelli says.

Even when the animals seemed awake and were moving around, heightened SWA was evident in their "wake" EEG.

"Monitoring SWA levels during waking time is very important in understanding the whole picture," she says. "High SWA levels during periods of both sleeping and waking signal that you need to go to sleep."

The researchers also found that SWA levels were different in different areas of the brain, and they speculate that this may depend on what parts of the brain had been used during the waking period.

Knowing that sleep restriction evokes the same brain response as sleep deprivation will help scientists better understand the harmful effects of sleep disturbances, says Cirelli.

"Scientists have learned much from 40 years of studies on total sleep deprivation, she says. "Now we know we can apply the lessons we learned from acute sleep deprivation to chronic sleep restriction, which is very relevant to people's lives today."

Co-authors include Susan Leemburg, Vladyslav V. Vyazovkiy, Umberto Olcese, Claudio L Bassetti and Giulio Tononi.

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

Further reports about: Cirelli EEG SWA cognitive task sleep deprivation sleep disturbance

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>