Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain region implicated in emotional disturbance in dementia patients

15.07.2013
A study by researchers at Neuroscience Research Australia (NeuRA) is the first to demonstrate that patients with frontotemporal dementia (FTD) lose the emotional content/colour of their memories. These findings explain why FTD patients may not vividly remember an emotionally charged event like a wedding or funeral.

The research team discovered that a region of the brain, called the orbitofrontal cortex, plays a key role in linking emotion and memories.

“This step forward in the mapping of the brain will improve how we diagnose different types of dementia,” says the study’s lead author, Associate Professor Olivier Piguet.

The fact that we vividly remember events infused with emotion - like birthday parties - is well established. Patients with frontotemporal dementia (FTD) - a degenerative condition that affects the frontal and temporal lobes of the brain - show profound difficulty understanding and expressing emotion. Yet the extent to which such deficits weaken emotional enhancement of memory remains unknown.

To find out, the NeuRA team showed patients images that prompt an emotional reaction in healthy people. Healthy control subjects and patients with Alzheimer’s disease remembered more emotional than neutral images. The FTD patients, however, did not.

Professor Piguet says, “Up until now, we knew that emotional memories were supported by the amygdala, a brain region also involved with emotion regulation. This study is the first to demonstrate the involvement of the orbitofrontal cortex in this process. This is an important development in how we understand the relations between emotions and memory and the disturbance of the emotional system in this type of dementia.”

NeuRA researcher, Fiona Kumfor, says the findings will help carers better understand why their loved ones may find personal interactions difficult. “Imagine if you attended the wedding of your daughter, or met your grandchild for the first time, but this event was as memorable as doing the groceries. We have discovered that this is what life is like for patients with FTD,” says Fiona.

“This is the first study that has looked at memory and emotion together in FTD and that is exciting. We now have new insight into the disease and can demonstrate that emotional memories are affected differently, depending on the type of dementia.

This information could help us create diagnostic tools and change how we diagnose certain types of dementias and differentiate between them. We have basically found the source of the deficit driving these impairments in patients, which brings us a step closer to understanding what it means to have FTD,” she concluded.

The paper – ‘The Orbitofrontal Cortex is involved in Emotional Enhancement of Memory’ has been published in the journal Brain.

If you would like more information or would like to interview Olivier Piguet or Fiona Kumfor, contact Siobhan Moylan at the NeuRA Media Office on +61 406 599 569 or 02 9399 1271.

Frontotemporal dementia, sometimes called frontotemporal lobar degeneration, was first described 100 years ago by Arnold Pick and was previously referred to as Pick’s disease. It is the second most common degenerative disease causing dementia in younger adults. The age of onset is typically in the 50s or 60s but can be as young as 30.

Kirsty Doole | EurekAlert!
Further information:
http://www.oup.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>