Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain-imaging study links cannabinoid receptors to post-traumatic stress disorder

Findings bring first pharmaceutical treatment for PTSD within reach

In a first-of-its-kind effort to illuminate the biochemical impact of trauma, researchers at NYU Langone Medical Center have discovered a connection between the quantity of cannabinoid receptors in the human brain, known as CB1 receptors, and post-traumatic stress disorder, the chronic, disabling condition that can plague trauma victims with flashbacks, nightmares and emotional instability. Their findings, which appear online today in the journal Molecular Psychiatry, will also be presented this week at the annual meeting of the Society of Biological Psychiatry in San Francisco.

CB1 receptors are part of the endocannabinoid system, a diffuse network of chemicals and signaling pathways in the body that plays a role in memory formation, appetite, pain tolerance and mood. Animal studies have shown that psychoactive chemicals such as cannabis, along with certain neurotransmitters produced naturally in the body, can impair memory and reduce anxiety when they activate CB1 receptors in the brain. Lead author Alexander Neumeister, MD, director of the molecular imaging program in the Departments of Psychiatry and Radiology at NYU School of Medicine, and colleagues are the first to demonstrate through brain imaging that people with PTSD have markedly lower concentrations of at least one of these neurotransmitters —an endocannabinoid known as anandamide—than people without PTSD. Their study, which was supported by three grants from the National Institutes of Health, illuminates an important biological fingerprint of PTSD that could help improve the accuracy of PTSD diagnoses, and points the way to medications designed specifically to treat trauma.

"There's not a single pharmacological treatment out there that has been developed specifically for PTSD," says Dr. Neumeister. "That's a problem. There's a consensus among clinicians that existing pharmaceutical treatments such as antidepressant simple do not work. In fact, we know very well that people with PTSD who use marijuana—a potent cannabinoid—often experience more relief from their symptoms than they do from antidepressants and other psychiatric medications. Clearly, there's a very urgent need to develop novel evidence-based treatments for PTSD."

The study divided 60 participants into three groups: participants with PTSD; participants with a history of trauma but no PTSD; and participants with no history of trauma or PTSD. Participants in all three groups received a harmless radioactive tracer that illuminates CB1 receptors when exposed to positron emissions tomography (PET scans). Results showed that participants with PTSD, especially women, had more CB1 receptors in brain regions associated with fear and anxiety than volunteers without PTSD. The PTSD group also had lower levels of the neurotransmitter anandamide, an endocannabinoid that binds to CB1. If anandamide levels are too low, Dr. Neumeister explains, the brain compensates by increasing the number of CB1 receptors. "This helps the brain utilize the remaining endocannabinoids," he says.

Much is still unknown about the effects of anandamide in humans but in rats the chemical has been shown to impair memory. "What is PTSD? It's an illness where people cannot forget what they have experienced," Dr. Neumeister says. "Our findings offer a possible biological explanation for this phenomenon."

Current diagnostics for PTSD rely on subjective measures and patient recall, making it difficult to accurately diagnose the condition or discern its symptoms from those of depression and anxiety. Biological markers of PTSD, such as tests for CB1 receptors and anandamide levels, could dramatically improve diagnosis and treatment for trauma victims.

Among the 1.7 million men and women who have served in the wars in Iraq and Afghanistan, an estimated 20% have PTSD. But PTSD is not limited to soldiers. Trauma from sexual abuse, domestic violence, car accidents, natural disaster, violent assault or even a life-threatening medical diagnosis can lead to PTSD. The condition affects nearly 8 million Americans annually.

These findings were made possible through the collaborative efforts of researchers at NYU School of Medicine, Yale School of Medicine, Harvard Medical School, the Department of Veterans Affairs National Center for PTSD and the University of California at Irvine.

About NYU School of Medicine:

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to

Lorinda Klein | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>