Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our brain looks at eyes first to identify a face

22.07.2009
A study by the University of Barcelona (UB) has analysed which facial features our brain examines to identify faces. Our brain adapts in order to obtain the maximum amount of information possible from each face and according to the study the key data for identification come from, in the first place, the eyes and then the shape of the mouth and nose.

The objective of this study, undertaken by researcher Matthias S. Keil from the Basic Psychology Department of the UB and published in the prestigious US journal PLoS Computational Biology, was to ascertain which specific features the brain focuses on to identify a face. It has been known for years that the brain primarily uses low spatial frequencies to recognise faces. "Spatial frequencies" are, in a manner of speaking, the elements that make up any given image.

As Keil confirmed to SINC, "low frequencies pertain to low resolution, that is, small changes of intensity in an image. In contrast, high frequencies represent the details in an image. If we move away from an image, we perceive increasingly less details, that is, the high spatial frequency components, while low frequencies remain visible and are the last to disappear."

As a result of the psychophysical research carried out prior to the publication of this study, it was known that the human brain was not interested in very high frequencies when identifying faces, despite such frequencies playing a significant role in, for example, determining a person's age. "In order to identify a face in an image, the brain always processes information with the same low resolution, of about 30 by 30 pixels from ear to ear, ignoring distance and the original resolution of the image," Keil says. "Until now, nobody had been able to explain this peculiar phenomenon and that was my starting point".

What Matthias S. Keil did was to analyse a large number of faces, namely those belonging to 868 women and 868 men. "The idea was to find common statistical regularities in the images." Keil used a model of the brain's visual system, that is, "I looked at the images to certain extent like the brain does, but with one difference: I had no preferred resolution, but considered all spatial frequencies as equal. As a result of this analysis, I obtained a resolution that is optimum in terms of encoding, as well as the signal-to-noise ratio, and was also the same resolution observed in the psychophysical experiments".

This result therefore suggests that faces are themselves responsible for our resolution preference. This led Keil to one of the brain's properties: "The brain has adapted optimally to draw the most useful information from faces in order to identify them. My model also predicts this resolution if we take into account the eyes alone – ignoring the nose and the mouth – but also by considering the mouth or nose separately, albeit less reliable."

Therefore, the brain extracts key information for facial identification primarily from the eyes, while the mouth and the nose are secondary, according to the study. According to Keil, if we take a photo of a friend as an example, one might think that every feature of the face is important to identify the person. However, numerous experiments have demonstrated that the brain prefers a coarse resolution, regardless of the distance between the face and the beholder. Until now, the reason for this was unclear. The analysis of the pictures of 868 men and 868 women in this study could help to explain this.

The results obtained by Kiel indicate that the most useful information is drawn from the images if they are around 30 by 30 pixels in size. "Furthermore, the pictures of the eyes provide the least 'noisiest' result, which means that they transmit more reliable information to the brain than the pictures of the mouth and the nose," the researcher said. This suggests that the brain's facial identification mechanisms are specialised in eyes.

This research complements a previous study published by Keil in PLoS ONE, which already advanced that artificial face identification systems obtain better results when they process small pictures of faces, which means that they could behave in this sense like humans.

References: Mathias S. Keil. "I Look in Your Eyes, Honey: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing". PLoS Computational Biology. número 5(3), marzo de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>