Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain emotion circuit sparks as teen girls size up peers

17.07.2009
What is going on in teenagers' brains as their drive for peer approval begins to eclipse their family affiliations?

Brain scans of teens sizing each other up reveal an emotion circuit activating more in girls as they grow older, but not in boys.

The study by Daniel Pine, M.D., of the National Institute of Mental Health (NIMH), part of National Institutes of Health, and colleagues, shows how emotion circuitry diverges in the male and female brain during a developmental stage in which girls are at increased risk for developing mood and anxiety disorders.

"During this time of heightened sensitivity to interpersonal stress and peers' perceptions, girls are becoming increasingly preoccupied with how individual peers view them, while boys tend to become more focused on their status within group pecking orders," explained Pine. "However, in the study, the prospect of interacting with peers activated brain circuitry involved in approaching others, rather than circuitry responsible for withdrawal and fear, which is associated with anxiety and depression."

Pine, Amanda Guyer, Ph.D., Eric Nelson, Ph.D., and colleagues at NIMH and Georgia State University, report on one of the first studies to reveal the workings of the teen brain in a simulated real-world social interaction, in the July, 2009 issue of the journal Child Development.

Thirty-four psychiatrically healthy males and females, aged 9 to 17, were ostensibly participating in a study of teenagers' communications via Internet chat rooms. They were told that after an fMRI (functional magnetic resonance imaging) scan, which visualizes brain activity, they would chat online with another teen from a collaborating study site. Each participant was asked to rate his or her interest in communicating with each of 40 teens presented on a computer screen, so they could be matched with a high interest participant (see picture below).

Two weeks later, the teens viewed the same faces while in an fMRI scanner. But this time they were asked to instead rate how interested they surmised each of the other prospective chatters would be in interacting with them.

Only after they exited the scanner did they learn that, in fact, the faces were of actors, not study participants, and that there would be no Internet chat. The scenario was intended to keep the teens engaged -- maintain a high level of anticipation/motivation -- during the tasks. This helped to ensure that the scanner would detect contrasts in brain circuit responses to high interest versus low interest peers.

Although the faces were selected by the researchers for their happy expressions, their attractiveness was random, so that they appeared to be a mix of typical peers encountered by teens.

As expected, the teen participants deemed the same faces they initially chose as high interest to be the peers most interested in interacting with them. Older participants tended to choose more faces of the opposite sex than younger ones. When they appraised anticipated interest from peers of high interest compared with low interest, older females showed more brain activity than younger females in circuitry that processes social emotion.

"This developmental shift suggested a change in socio-emotional calculus from avoidance to approach," noted Pine. The circuit is made up of the nucleus accumbens (reward and motivation), hypothalamus (hormonal activation), hippocampus (social memory) and insula (visceral/subjective feelings).

By contrast, males showed little change in the activity of most of these circuit areas with age, except for a decrease in activation of the insula. This may reflect a waning of interpersonal emotional ties over time in teenage males, as they shift their interest to groups, suggest Pine and colleagues.

"In females, absence of activation in areas associated with mood and anxiety disorders, such as the amygdala, suggests that emotional responses to peers may be driven more by a brain network related to approach than to one related to fear and withdrawal," said Pine. "This reflects resilience to psychosocial stress among healthy female adolescents during this vulnerable period."

Reference: Probing the neural correlates of anticipated peer evaluation in adolescence. Guyer AE, McClure-Tone EB, Shiffrin ND, Pine DS, Nelson EE. July 2009, Child Development.

The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the www.nimh.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the www.nih.gov .

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>