Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-controlled cursor doubles as a neural workout

16.02.2010
Harnessing brain signals to control keyboards, robots or prosthetic devices is an active area of medical research. Now a rare peek at a human brain hooked up to a computer shows that the two can adapt to each other quickly, and possibly to the brain's benefit.

Researchers at the University of Washington looked at signals on the brain's surface while using imagined movements to control a cursor. The results, published this week in the Proceedings of the National Academy of Sciences, show that watching a cursor respond to one's thoughts prompts brain signals to become stronger than those generated in day-to-day life.

"Bodybuilders get muscles that are larger than normal by lifting weights," said lead author Kai Miller, a UW doctoral student in physics, neuroscience and medicine. "We get brain activity that's larger than normal by interacting with brain-computer interfaces. By using these interfaces, patients create super-active populations of brain cells."

The finding holds promise for rehabilitating patients after stroke or other neurological damage. It also suggests that a human brain could quickly become adept at manipulating an external device such as a computer interface or a prosthetic limb.

The team of computer scientists, physicists, physiologists and neurosurgeons studied eight patients awaiting epilepsy surgery at two Seattle hospitals. Patients had electrodes attached to the surface of their brains during the week leading up to the surgery and agreed to participate in research that would look at connecting brains to a computer.

Asking people to imagine doing a movement – such as moving their arm – is commonly done to produce a brain signal that can be used to control a device. But how that process works is poorly understood.

"A lot of the studies in this field are in non-human primates," Miller said. "But how do you ask an animal to imagine doing something? We don't even know that they can." The researchers first recorded brain patterns when human subjects clenched and unclenched a fist, stuck out a tongue, shrugged their shoulders or said the word "move."

Next, the scientists recorded brain patterns when subjects imagined performing the same actions. These patterns were similar to the patterns for actual action but much weaker, as expected from previous studies.

Finally, the researchers looked at signals when subjects imagined performing the action and those brain signals were used to move a cursor toward a target on a computer screen. After less than 10 minutes of practice, brain signals from imagined movement became significantly stronger than when actually performing the physical motion.

"People have been looking at imagined movements as a way to control computers for a long time. This study provides a glimpse of the underlying neural machinery," said co-author Rajesh Rao, a UW associate professor of computer science and engineering who is Miller's neuroscience dissertation advisor.

"The rapid augmentation of activity during this type of learning bears testimony to the remarkable plasticity of the brain as it learns to control a non-biological device," Rao said.

After less than 10 minutes of training, two of the subjects also reported they no longer had to imagine moving the body part and could just think about moving the cursor.

"The ability of subjects to change the signal with feedback was much stronger than we had hoped for," said co-author Dr. Jeffrey Ojemann, a UW professor of neurological surgery. "This is likely to have implications for future prosthetic work."

The new findings also provide clues about which brain signals to tap. Researchers compared the patterns in low-frequency signals, usually used to control external devices, and high-frequency signals, typically dismissed as noise. They discovered that the high-frequency signals are more specific to each type of movement. Because each one occupies a smaller portion of the brain, several high-frequency signals could be tapped simultaneously to control more sophisticated devices.

Rao's group has used electrodes on the surface of the scalp to record low-frequency brain signals for brain-computer communication. His group will now try using such non-invasive methods to harness high-frequency signals.

The research was funded by the National Science Foundation, the National Institutes of Health, NASA's graduate student research program and the National Institute of General Medical Sciences' medical scientist training program. Other co-authors are UW physiology and biophysics professor Eberhard Fetz, UW physics professor Marcel den Nijs and Gerwin Schalk at the New York State Department of Health.

For more information, contact Miller at 206-355-0244 or kjmiller@uw.edu and Rao at 206-914-4719 or rao@cs.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>