Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-controlled cursor doubles as a neural workout

16.02.2010
Harnessing brain signals to control keyboards, robots or prosthetic devices is an active area of medical research. Now a rare peek at a human brain hooked up to a computer shows that the two can adapt to each other quickly, and possibly to the brain's benefit.

Researchers at the University of Washington looked at signals on the brain's surface while using imagined movements to control a cursor. The results, published this week in the Proceedings of the National Academy of Sciences, show that watching a cursor respond to one's thoughts prompts brain signals to become stronger than those generated in day-to-day life.

"Bodybuilders get muscles that are larger than normal by lifting weights," said lead author Kai Miller, a UW doctoral student in physics, neuroscience and medicine. "We get brain activity that's larger than normal by interacting with brain-computer interfaces. By using these interfaces, patients create super-active populations of brain cells."

The finding holds promise for rehabilitating patients after stroke or other neurological damage. It also suggests that a human brain could quickly become adept at manipulating an external device such as a computer interface or a prosthetic limb.

The team of computer scientists, physicists, physiologists and neurosurgeons studied eight patients awaiting epilepsy surgery at two Seattle hospitals. Patients had electrodes attached to the surface of their brains during the week leading up to the surgery and agreed to participate in research that would look at connecting brains to a computer.

Asking people to imagine doing a movement – such as moving their arm – is commonly done to produce a brain signal that can be used to control a device. But how that process works is poorly understood.

"A lot of the studies in this field are in non-human primates," Miller said. "But how do you ask an animal to imagine doing something? We don't even know that they can." The researchers first recorded brain patterns when human subjects clenched and unclenched a fist, stuck out a tongue, shrugged their shoulders or said the word "move."

Next, the scientists recorded brain patterns when subjects imagined performing the same actions. These patterns were similar to the patterns for actual action but much weaker, as expected from previous studies.

Finally, the researchers looked at signals when subjects imagined performing the action and those brain signals were used to move a cursor toward a target on a computer screen. After less than 10 minutes of practice, brain signals from imagined movement became significantly stronger than when actually performing the physical motion.

"People have been looking at imagined movements as a way to control computers for a long time. This study provides a glimpse of the underlying neural machinery," said co-author Rajesh Rao, a UW associate professor of computer science and engineering who is Miller's neuroscience dissertation advisor.

"The rapid augmentation of activity during this type of learning bears testimony to the remarkable plasticity of the brain as it learns to control a non-biological device," Rao said.

After less than 10 minutes of training, two of the subjects also reported they no longer had to imagine moving the body part and could just think about moving the cursor.

"The ability of subjects to change the signal with feedback was much stronger than we had hoped for," said co-author Dr. Jeffrey Ojemann, a UW professor of neurological surgery. "This is likely to have implications for future prosthetic work."

The new findings also provide clues about which brain signals to tap. Researchers compared the patterns in low-frequency signals, usually used to control external devices, and high-frequency signals, typically dismissed as noise. They discovered that the high-frequency signals are more specific to each type of movement. Because each one occupies a smaller portion of the brain, several high-frequency signals could be tapped simultaneously to control more sophisticated devices.

Rao's group has used electrodes on the surface of the scalp to record low-frequency brain signals for brain-computer communication. His group will now try using such non-invasive methods to harness high-frequency signals.

The research was funded by the National Science Foundation, the National Institutes of Health, NASA's graduate student research program and the National Institute of General Medical Sciences' medical scientist training program. Other co-authors are UW physiology and biophysics professor Eberhard Fetz, UW physics professor Marcel den Nijs and Gerwin Schalk at the New York State Department of Health.

For more information, contact Miller at 206-355-0244 or kjmiller@uw.edu and Rao at 206-914-4719 or rao@cs.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>