Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain connectivity reveals hidden motives

04.03.2016

Often, it is hard to understand why people behave the way they do, because their true motives remain hidden. Researchers at the University of Zurich have now shown how peoples’ motives can be identified as they are characterized by a specific interplay between different brain regions. They also show how empathy motives increase altruistic behavior in selfish people.

To understand human behaviors, it is crucial to understand the motives behind them. So far, there was no direct way to identify motives. Simply observing behavior or eliciting explanations from individuals for their actions will not give reliable results as motives are considered to be private and people can be unwilling to unveil - or even be unaware of - their own motives.


UZH-Forschende identifizieren erstmals Verhaltensmotive anhand der Verknüpfung ihrer Netzwerke im Gehirn. (Image: © decade3d / Fotolia.com)

Psychologist and neuroscientist Grit Hein and Ernst Fehr from the Department of Economics, University of Zurich teamed up with Yosuke Morishima, Susanne Leiberg, Sunhae Sul and found that the way relevant brain regions communicate with each other is altered depending on the motives driving a specific behavioral choice.

This interplay between brain regions allowed them to identify the underlying motives. These motives could not be uncovered by observing the person’s choices, or based on the brain regions that are activated during the decision-making.

Connections between brain regions linked to motives

During the study, participants were placed in an fMRI scanner and made altruistic decisions driven by an empathy motive (the desire to help a person for whom one feels empathy) or a reciprocity motive (the desire to reciprocate an individual’s previous kindness). Simply looking at the functional activity of specific regions of the brain couldn’t reveal the motive underlying the decisions. Broadly speaking, the same areas in the brain lit up in both settings.

“However, using Dynamic Causal Modeling (DCM) analyses, we could investigate the interplay between these brain regions and found marked differences between empathy- based and reciprocity-based decisions”, explains Grit Hein. “The impact of the motives on the interplay between different brain regions was so fundamentally different that it could be used to classify the motive of a person with high accuracy” she continues.

Empathy motive increases altruistic behavior in selfish people

A further important result was that motives are processed differently in selfish and prosocial people. In selfish people, the empathy but not the reciprocity motive increased the number of altruistic decisions. After activating the empathy motive, selfish individual resembled persons with prosocial preferences in terms of brain connectivity and altruistic behavior. In contrast, prosocial people behaved even more altruistically after activating the reciprocity, but not the empathy motive.

Literature:

Grit Hein, Yosuke Morishima, Susanne Leiberg, and Ernst Fehr. The brain's functional network architecture reveals human motives. Science. March 3, 2016. doi: 10.1126/science.aac7992.

Contacts

Dr. Grit Hein
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 37 41
E-mail: grit.hein@econ.uzh.ch

Prof. Ernst Fehr
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 37 01
E-mail: ernst.fehr@econ.uzh.ch

Media Relations
University of Zurich
Phone: +41 44 634 44 32
E-mail: mediarelations@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>