Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain connectivity reveals hidden motives

04.03.2016

Often, it is hard to understand why people behave the way they do, because their true motives remain hidden. Researchers at the University of Zurich have now shown how peoples’ motives can be identified as they are characterized by a specific interplay between different brain regions. They also show how empathy motives increase altruistic behavior in selfish people.

To understand human behaviors, it is crucial to understand the motives behind them. So far, there was no direct way to identify motives. Simply observing behavior or eliciting explanations from individuals for their actions will not give reliable results as motives are considered to be private and people can be unwilling to unveil - or even be unaware of - their own motives.


UZH-Forschende identifizieren erstmals Verhaltensmotive anhand der Verknüpfung ihrer Netzwerke im Gehirn. (Image: © decade3d / Fotolia.com)

Psychologist and neuroscientist Grit Hein and Ernst Fehr from the Department of Economics, University of Zurich teamed up with Yosuke Morishima, Susanne Leiberg, Sunhae Sul and found that the way relevant brain regions communicate with each other is altered depending on the motives driving a specific behavioral choice.

This interplay between brain regions allowed them to identify the underlying motives. These motives could not be uncovered by observing the person’s choices, or based on the brain regions that are activated during the decision-making.

Connections between brain regions linked to motives

During the study, participants were placed in an fMRI scanner and made altruistic decisions driven by an empathy motive (the desire to help a person for whom one feels empathy) or a reciprocity motive (the desire to reciprocate an individual’s previous kindness). Simply looking at the functional activity of specific regions of the brain couldn’t reveal the motive underlying the decisions. Broadly speaking, the same areas in the brain lit up in both settings.

“However, using Dynamic Causal Modeling (DCM) analyses, we could investigate the interplay between these brain regions and found marked differences between empathy- based and reciprocity-based decisions”, explains Grit Hein. “The impact of the motives on the interplay between different brain regions was so fundamentally different that it could be used to classify the motive of a person with high accuracy” she continues.

Empathy motive increases altruistic behavior in selfish people

A further important result was that motives are processed differently in selfish and prosocial people. In selfish people, the empathy but not the reciprocity motive increased the number of altruistic decisions. After activating the empathy motive, selfish individual resembled persons with prosocial preferences in terms of brain connectivity and altruistic behavior. In contrast, prosocial people behaved even more altruistically after activating the reciprocity, but not the empathy motive.

Literature:

Grit Hein, Yosuke Morishima, Susanne Leiberg, and Ernst Fehr. The brain's functional network architecture reveals human motives. Science. March 3, 2016. doi: 10.1126/science.aac7992.

Contacts

Dr. Grit Hein
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 37 41
E-mail: grit.hein@econ.uzh.ch

Prof. Ernst Fehr
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 37 01
E-mail: ernst.fehr@econ.uzh.ch

Media Relations
University of Zurich
Phone: +41 44 634 44 32
E-mail: mediarelations@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>