Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain connections form in clusters during learning

21.02.2012
Researchers track structural changes during formation of new memories

New connections between brain cells emerge in clusters in the brain as animals learn to perform a new task, according to a study published in Nature on February 19 (advance online publication). Led by researchers at the University of California, Santa Cruz, the study reveals details of how brain circuits are rewired during the formation of new motor memories.

The researchers studied mice as they learned new behaviors, such as reaching through a slot to get a seed. They observed changes in the motor cortex, the brain layer that controls muscle movements, during the learning process. Specifically, they followed the growth of new "dendritic spines," structures that form the connections (synapses) between nerve cells.

"For the first time we are able to observe the spatial distribution of new synapses related to the encoding of memory," said Yi Zuo, assistant professor of molecular, cell and developmental biology at UC Santa Cruz and corresponding author of the paper.

In a previous study, Zuo and others documented the rapid growth of new dendritic spines on pyramidal neurons in the motor cortex during the learning process. These spines form synapses where the pyramidal neurons receive input from other brain regions involved in motor memories and muscle movements. In the new study, first author Min Fu, a postdoctoral researcher in Zuo's lab, analyzed the spatial distribution of the newly formed synapses.

Initial results of the spatial analysis showed that one third of the newly formed synapses were located next to another new synapse. These clustered synapses tended to form over the course of a few days during the learning period, when the mouse was repeatedly performing the new behavior. Compared to non-clustered counterparts, the clustered synapses were more likely to persist through the learning sessions and after training stopped.

In addition, the researchers found that after formation of the second spine in a cluster, the first spine grew larger. The size of the spine head correlates with the strength of the synapse. "We found that formation of a second connection is correlated with a strengthening of the first connection, which suggests that they are likely to be involved in the same circuitry," Zuo said. "The clustering of synapses may serve to magnify the strength of the connections."

Another part of the study also supported the idea that the clustered synapses are involved in neural circuits specific to the task being learned. The researchers studied mice trained first in one task and then in a different task. Instead of grabbing a seed, the mice had to learn how to handle a piece of capellini pasta. Both tasks induced the formation of clustered spines, but spines formed during the learning of different tasks did not cluster together.

The researchers also looked at mice that were challenged with new motor tasks every day, but did not repeat the same task over and over like the ones trained in seed-grabbing or capellini-handling. These mice also grew lots of new dendritic spines, but few of the new spines were clustered.

"Repetitive activation of the same cortical circuit is really important in learning a new task," Zuo said. "But what is the optimal frequency of repetition? Ultimately, by studying the relationship between synapse formation and learning, we want to find out the best way to induce new memories."

The study used mice that had been genetically altered to make a fluorescent protein within certain neurons in the motor cortex. The researchers used a special microscopy technique (two-photon microscopy) to obtain images of those neurons near the surface of the brain. The noninvasive imaging technique enabled them to view changes in individual brain cells of the mice before, during, and after learning a new behavior.

In addition to Zuo and first author Min Fu, the coauthors of the paper include UCSC graduate student Xinzhu Yu and Stanford University biologist Ju Lu. This research was supported by grants from the Dana Foundation and the National Institute of Mental Health.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>