Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain connections form in clusters during learning

21.02.2012
Researchers track structural changes during formation of new memories

New connections between brain cells emerge in clusters in the brain as animals learn to perform a new task, according to a study published in Nature on February 19 (advance online publication). Led by researchers at the University of California, Santa Cruz, the study reveals details of how brain circuits are rewired during the formation of new motor memories.

The researchers studied mice as they learned new behaviors, such as reaching through a slot to get a seed. They observed changes in the motor cortex, the brain layer that controls muscle movements, during the learning process. Specifically, they followed the growth of new "dendritic spines," structures that form the connections (synapses) between nerve cells.

"For the first time we are able to observe the spatial distribution of new synapses related to the encoding of memory," said Yi Zuo, assistant professor of molecular, cell and developmental biology at UC Santa Cruz and corresponding author of the paper.

In a previous study, Zuo and others documented the rapid growth of new dendritic spines on pyramidal neurons in the motor cortex during the learning process. These spines form synapses where the pyramidal neurons receive input from other brain regions involved in motor memories and muscle movements. In the new study, first author Min Fu, a postdoctoral researcher in Zuo's lab, analyzed the spatial distribution of the newly formed synapses.

Initial results of the spatial analysis showed that one third of the newly formed synapses were located next to another new synapse. These clustered synapses tended to form over the course of a few days during the learning period, when the mouse was repeatedly performing the new behavior. Compared to non-clustered counterparts, the clustered synapses were more likely to persist through the learning sessions and after training stopped.

In addition, the researchers found that after formation of the second spine in a cluster, the first spine grew larger. The size of the spine head correlates with the strength of the synapse. "We found that formation of a second connection is correlated with a strengthening of the first connection, which suggests that they are likely to be involved in the same circuitry," Zuo said. "The clustering of synapses may serve to magnify the strength of the connections."

Another part of the study also supported the idea that the clustered synapses are involved in neural circuits specific to the task being learned. The researchers studied mice trained first in one task and then in a different task. Instead of grabbing a seed, the mice had to learn how to handle a piece of capellini pasta. Both tasks induced the formation of clustered spines, but spines formed during the learning of different tasks did not cluster together.

The researchers also looked at mice that were challenged with new motor tasks every day, but did not repeat the same task over and over like the ones trained in seed-grabbing or capellini-handling. These mice also grew lots of new dendritic spines, but few of the new spines were clustered.

"Repetitive activation of the same cortical circuit is really important in learning a new task," Zuo said. "But what is the optimal frequency of repetition? Ultimately, by studying the relationship between synapse formation and learning, we want to find out the best way to induce new memories."

The study used mice that had been genetically altered to make a fluorescent protein within certain neurons in the motor cortex. The researchers used a special microscopy technique (two-photon microscopy) to obtain images of those neurons near the surface of the brain. The noninvasive imaging technique enabled them to view changes in individual brain cells of the mice before, during, and after learning a new behavior.

In addition to Zuo and first author Min Fu, the coauthors of the paper include UCSC graduate student Xinzhu Yu and Stanford University biologist Ju Lu. This research was supported by grants from the Dana Foundation and the National Institute of Mental Health.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>