Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain circuitry play role in moral sensitivity as people grow up

30.05.2011
People's moral responses to similar situations change as they age, according to a new study at the University of Chicago that combined brain scanning, eye-tracking and behavioral measures to understand how the brain responds to morally laden scenarios.

Both preschool children and adults distinguish between damage done either intentionally or accidently when assessing whether a perpetrator had done something wrong. Nonetheless, adults are much less likely than children to think someone should be punished for damaging an object, especially if the action was accidental, said study author Jean Decety, the Irving B. Harris Professor in Psychology and Psychiatry at the University of Chicago and a leading scholar on affective and social neuroscience.

The different responses correlate with the various stages of development, Decety said, as the brain becomes better equipped to make reasoned judgments and integrate an understanding of the mental states of others with the outcome of their actions. Negative emotions alert people to the moral nature of a situation by bringing on discomfort that can precede moral judgment, and such an emotional response is stronger in young children, he explained.

"This is the first study to examine brain and behavior relationships in response to moral and non-moral situations from a neurodevelopmental perspective," wrote Decety in the article, "The Contribution of Emotion and Cognition to Moral Sensitivity: A Neurodevelopmental Study," published in the journal Cerebral Cortex. The study provides strong evidence that moral reasoning involves a complex integration between affective and cognitive processes that gradually changes with age.

For the research, Decety and colleagues studied 127 participants, aged 4 to 36, who were shown short video clips while undergoing an fMRI scan. The team also measured changes in the dilation of the people's pupils as they watched the clips.

The participants watched a total of 96 clips that portrayed intentional harm, such as someone being shoved, and accidental harm, such as someone being struck accidentally, such as a golf player swinging a club. The clips also showed intentional damage to objects, such as a person kicking a bicycle tire, and accidental damage, such as a person knocking a teapot off the shelf.

Eye tracking in the scanner revealed that all of the participants, irrespective of their age, paid more attention to people being harmed and to objects being damaged than they did to the perpetrators. Additionally, an analysis of pupil size showed that "pupil dilation was significantly greater for intentional actions than accidental actions, and this difference was constant across age, and correlated with activity in the amygdala and anterior cingulate cortex," Decety said.

The study revealed that the extent of activation in different areas of the brain as participants were exposed to the morally laden videos changed with age. For young children, the amygdala, which is associated the generation of emotional responses to a social situation, was much more activated than it was in adults.

In contrast, adults' responses were highest in the dorsolateral and ventromedial prefrontal cortex — areas of the brain that allow people to reflect on the values linked to outcomes and actions.

In addition to viewing the video clips, participants were asked to determine, for instance, how mean was the perpetrator, and how much punishment should he receive for causing damage or injury. The responses showed a clear connection between moral judgments and the activation the team had observed in the brain.

"Whereas young children had a tendency to consider all the perpetrator malicious, irrespective of intention and targets (people and objects), as participants aged, they perceived the perpetrator as clearly less mean when carrying out an accidental action, and even more so when the target was an object," Decety said.

When recommending punishments, adults were more likely to make allowances for actions that were accidental, he said. The response showed that they had a better developed prefrontal cortex and stronger functional connectivity between this region and the amygdala than children. Adults were better equipped to make moral judgments. "In addition, the ratings of empathic sadness for the victim, which were strongest in young children, decreased gradually with age, and correlated with the activity in the insula and subgenual prefrontal cortex," which area areas associated with emotional behavior and automatic response to stresses, Decety said. Together, the results are consistent with the view that morality is instantiated by functionally integrating several distributed areas/networks.

The research was supported with a grant from the National Science Foundation. Joining Decety in writing the paper were Kalina Michalska, a postdoctoral scholar, and Katherine Kinzler, an assistant professor, both in the Department of Psychology.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: frontal cortex prefrontal cortex video clips

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>