Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain architecture may be driven by different cognitive challenges

25.06.2009
Scientists trying to understand how the brains of animals evolve have found that evolutionary changes in brain structure reflect the types of social interactions and environmental stimuli different species face.

The study is the first to compare multiple species of related animals, in this case social wasps, to look at how roles of individuals in a society might affect brain architecture.

The research looks at brain structure differences between species, asking how the size of different brain regions relates to each species' social complexity and nest architecture. The results are being published Wednesday (June 24) in the British journal Proceedings of the Royal Society B. The Royal Society is the United Kingdom's national academy of sciences.

"It looks as if different brain regions respond to specific challenges. It is important to find these relationships because they can tell us which challenges guide brain evolution," said Sean O'Donnell, a University of Washington associate professor of psychology and co-author of the study.

O'Donnell and lead author Yamile Molina, who just completed work on her doctorate at the UW, looked at the brains of eight New World social wasp species from Costa Rica and Ecuador.

"One idea is that social interactions themselves put on demands for advanced cognitive abilities. We are interested in finding out exactly which social and environmental factors favor an increase in a given brain region," said Molina.

The UW researchers captured queens and female workers from colonies of the eight wasp species and examined their brains. For the most part, males usually don't play an important behavioral role in a social wasp colony's labor and other activities, according to O'Donnell. However, a follow-up study will look at the male wasp brain structure.

In examining the female wasps, the researchers found strong evidence that queens, rather than workers, have distinct brain structure that matches the species' cognitive challenges.

Social wasps form colonies differently and build two types of nests. In more primitive wasps, a queen mates and flies away separately to establish a small colony. Among the more advanced social wasps, several young queens and a group of workers leave a colony as a swarm to establish a new colony that has a much larger population. Independent founders and a few swarm founders build open-comb nests, while most swarm founders build enclosed nests with interiors that are much darker.

Molina and O'Donnell found that queens from open-comb nests had larger central brain processing regions that are devoted to vision than queens from closed-nest colonies. Queens from enclosed nests, where vision isn't as important and where they rely on chemical communication through pheromones, had larger antennal lobes to process chemical messages than queens from open nests.

Among independent-founding wasps, where queens regulate the behavior of a colony, queens had larger vision-processing regions (called mushroom body collars) than their workers. But among swarm-founders, which have a decentralized form of colony regulation, workers had larger mushroom body collars and larger optic lobes than queens.

"We can learn things about ourselves from a whole variety of animals. When neurobiologists use animal models they often look to rodents and primates," said Molina. "I would argue social insects like wasps are like us in some ways and should be an important model as well. In this study we found that it's not being social, but how you are social that explains brain architecture. The brain can be a mirror reflecting what an animal is using it for."

Co-author of the paper is Robin Harris, a UW doctoral student in neurobiology. The Society for Comparative and Integrative Biology and the National Science Foundation funded the research.

For more information, contact Molina at ymolina@u.washington.edu or O'Donnell at 206-543-2315 or sodonnel@u.washington.edu.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>