Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain architecture may be driven by different cognitive challenges

25.06.2009
Scientists trying to understand how the brains of animals evolve have found that evolutionary changes in brain structure reflect the types of social interactions and environmental stimuli different species face.

The study is the first to compare multiple species of related animals, in this case social wasps, to look at how roles of individuals in a society might affect brain architecture.

The research looks at brain structure differences between species, asking how the size of different brain regions relates to each species' social complexity and nest architecture. The results are being published Wednesday (June 24) in the British journal Proceedings of the Royal Society B. The Royal Society is the United Kingdom's national academy of sciences.

"It looks as if different brain regions respond to specific challenges. It is important to find these relationships because they can tell us which challenges guide brain evolution," said Sean O'Donnell, a University of Washington associate professor of psychology and co-author of the study.

O'Donnell and lead author Yamile Molina, who just completed work on her doctorate at the UW, looked at the brains of eight New World social wasp species from Costa Rica and Ecuador.

"One idea is that social interactions themselves put on demands for advanced cognitive abilities. We are interested in finding out exactly which social and environmental factors favor an increase in a given brain region," said Molina.

The UW researchers captured queens and female workers from colonies of the eight wasp species and examined their brains. For the most part, males usually don't play an important behavioral role in a social wasp colony's labor and other activities, according to O'Donnell. However, a follow-up study will look at the male wasp brain structure.

In examining the female wasps, the researchers found strong evidence that queens, rather than workers, have distinct brain structure that matches the species' cognitive challenges.

Social wasps form colonies differently and build two types of nests. In more primitive wasps, a queen mates and flies away separately to establish a small colony. Among the more advanced social wasps, several young queens and a group of workers leave a colony as a swarm to establish a new colony that has a much larger population. Independent founders and a few swarm founders build open-comb nests, while most swarm founders build enclosed nests with interiors that are much darker.

Molina and O'Donnell found that queens from open-comb nests had larger central brain processing regions that are devoted to vision than queens from closed-nest colonies. Queens from enclosed nests, where vision isn't as important and where they rely on chemical communication through pheromones, had larger antennal lobes to process chemical messages than queens from open nests.

Among independent-founding wasps, where queens regulate the behavior of a colony, queens had larger vision-processing regions (called mushroom body collars) than their workers. But among swarm-founders, which have a decentralized form of colony regulation, workers had larger mushroom body collars and larger optic lobes than queens.

"We can learn things about ourselves from a whole variety of animals. When neurobiologists use animal models they often look to rodents and primates," said Molina. "I would argue social insects like wasps are like us in some ways and should be an important model as well. In this study we found that it's not being social, but how you are social that explains brain architecture. The brain can be a mirror reflecting what an animal is using it for."

Co-author of the paper is Robin Harris, a UW doctoral student in neurobiology. The Society for Comparative and Integrative Biology and the National Science Foundation funded the research.

For more information, contact Molina at ymolina@u.washington.edu or O'Donnell at 206-543-2315 or sodonnel@u.washington.edu.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>