Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in brain architecture may be driven by different cognitive challenges

25.06.2009
Scientists trying to understand how the brains of animals evolve have found that evolutionary changes in brain structure reflect the types of social interactions and environmental stimuli different species face.

The study is the first to compare multiple species of related animals, in this case social wasps, to look at how roles of individuals in a society might affect brain architecture.

The research looks at brain structure differences between species, asking how the size of different brain regions relates to each species' social complexity and nest architecture. The results are being published Wednesday (June 24) in the British journal Proceedings of the Royal Society B. The Royal Society is the United Kingdom's national academy of sciences.

"It looks as if different brain regions respond to specific challenges. It is important to find these relationships because they can tell us which challenges guide brain evolution," said Sean O'Donnell, a University of Washington associate professor of psychology and co-author of the study.

O'Donnell and lead author Yamile Molina, who just completed work on her doctorate at the UW, looked at the brains of eight New World social wasp species from Costa Rica and Ecuador.

"One idea is that social interactions themselves put on demands for advanced cognitive abilities. We are interested in finding out exactly which social and environmental factors favor an increase in a given brain region," said Molina.

The UW researchers captured queens and female workers from colonies of the eight wasp species and examined their brains. For the most part, males usually don't play an important behavioral role in a social wasp colony's labor and other activities, according to O'Donnell. However, a follow-up study will look at the male wasp brain structure.

In examining the female wasps, the researchers found strong evidence that queens, rather than workers, have distinct brain structure that matches the species' cognitive challenges.

Social wasps form colonies differently and build two types of nests. In more primitive wasps, a queen mates and flies away separately to establish a small colony. Among the more advanced social wasps, several young queens and a group of workers leave a colony as a swarm to establish a new colony that has a much larger population. Independent founders and a few swarm founders build open-comb nests, while most swarm founders build enclosed nests with interiors that are much darker.

Molina and O'Donnell found that queens from open-comb nests had larger central brain processing regions that are devoted to vision than queens from closed-nest colonies. Queens from enclosed nests, where vision isn't as important and where they rely on chemical communication through pheromones, had larger antennal lobes to process chemical messages than queens from open nests.

Among independent-founding wasps, where queens regulate the behavior of a colony, queens had larger vision-processing regions (called mushroom body collars) than their workers. But among swarm-founders, which have a decentralized form of colony regulation, workers had larger mushroom body collars and larger optic lobes than queens.

"We can learn things about ourselves from a whole variety of animals. When neurobiologists use animal models they often look to rodents and primates," said Molina. "I would argue social insects like wasps are like us in some ways and should be an important model as well. In this study we found that it's not being social, but how you are social that explains brain architecture. The brain can be a mirror reflecting what an animal is using it for."

Co-author of the paper is Robin Harris, a UW doctoral student in neurobiology. The Society for Comparative and Integrative Biology and the National Science Foundation funded the research.

For more information, contact Molina at ymolina@u.washington.edu or O'Donnell at 206-543-2315 or sodonnel@u.washington.edu.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>