Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain activity exposes those who break promises

10.12.2009
Scientists from the University of Zurich have discovered the physiological mechanisms in the brain that underlie broken promises.

Patterns of brain activity even enable predicting whether someone will break a promise. The results of the study conducted by Dr. Thomas Baumgartner and Professor Ernst Fehr, both of the University of Zurich, and Professor Urs Fischbacher of the University of Konstanz, will be published in the journal Neuron on December 10, 2009.

The promise is one of the oldest human-specific behaviors promoting cooperation, trust, and partnership. Although promises are generally not legally binding, they form the basis for a great many everyday social and economic exchange situations. Promises, however, are not only kept, but also broken. Material incentives to deceive are in fact ubiquitous in human society, and promises can thus also be misused in any social or economic exchange scenario in order to cheat one's interaction partner. Business people, politicians, diplomats, attorneys, and private persons do not always behave honestly, as recent financial scandals have dramatically demonstrated.

Despite the ubiquity of promises in human life, we know very little about the brain physiological mechanisms underlying this phenomenon. In order to increase understanding in this area, neuroscientist Thomas Baumgartner (University of Zurich) and economists Ernst Fehr (University of Zurich) and Urs Fischbacher (University of Konstanz) carried out a social interaction experiment in a brain scanner where the breach of a promise led both to monetary benefits for the promise breaker and to monetary costs for the interaction partner. The results of the study show that increased activity in areas of the brain playing an important role in processes of emotion and control accompany the breach of a promise. This pattern of brain activity suggests that breaking a promise triggers an emotional conflict in the promise breaker due to the suppression of an honest response.

Furthermore, the most important finding of the study enabled the researchers to show that "perfidious" patterns of brain activity even allow the prediction of future behavior. Indeed, experimental subjects who ultimately keep a promise and those who eventually break one act exactly the same at the time the promise is made - both swear to keep their word. Brain activity at this stage, however, often exposes the subsequent promise breakers.

Catching culprits

As neuroscientist Thomas Baumgartner elucidates, these findings indicate that brain activity measurements may already reveal malevolent intentions at a point in time prior to commitment of a dishonest or deceitful act. "Such a finding thus permits the speculation that the measurement of brain activity could be applied in the (distant) future not only to catch culprits, but even beyond this perhaps to aid in the prevention of fraudulent and criminal intrigues - a vision already made reality in the science fiction film 'Minority Report'."

"We've discovered critical elements of the neuronal basis of broken promises," economist Ernst Fehr explains. "In light of the significance of promises in everyday, interpersonal cohabitation in society, these findings offer the prospect of being able to fathom and better understand the brain physiological basis of pro-social and especially of antisocial behavior in general."

Original article:

Thomas Baumgartner, Urs Fischbacher, Anja Feierabend, Kai Lutz and Ernst Fehr: The Neural Circuitry of a Broken Promise, Neuron, Vol. 64, No. 5, 2009

Contacts:

Thomas Baumgartner, Institute for Empirical Research in Economics, Laboratory of Social and Neural Systems Research, University of Zurich
Telephone: +41 44 634 50 97
t.baumgartner@iew.uzh.ch
Ernst Fehr, Director of the Institute for Empirical Research in Economics, University of Zurich,
Telephone: +41 44 634 37 09
efehr@iew.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>