Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain activity exposes those who break promises

10.12.2009
Scientists from the University of Zurich have discovered the physiological mechanisms in the brain that underlie broken promises.

Patterns of brain activity even enable predicting whether someone will break a promise. The results of the study conducted by Dr. Thomas Baumgartner and Professor Ernst Fehr, both of the University of Zurich, and Professor Urs Fischbacher of the University of Konstanz, will be published in the journal Neuron on December 10, 2009.

The promise is one of the oldest human-specific behaviors promoting cooperation, trust, and partnership. Although promises are generally not legally binding, they form the basis for a great many everyday social and economic exchange situations. Promises, however, are not only kept, but also broken. Material incentives to deceive are in fact ubiquitous in human society, and promises can thus also be misused in any social or economic exchange scenario in order to cheat one's interaction partner. Business people, politicians, diplomats, attorneys, and private persons do not always behave honestly, as recent financial scandals have dramatically demonstrated.

Despite the ubiquity of promises in human life, we know very little about the brain physiological mechanisms underlying this phenomenon. In order to increase understanding in this area, neuroscientist Thomas Baumgartner (University of Zurich) and economists Ernst Fehr (University of Zurich) and Urs Fischbacher (University of Konstanz) carried out a social interaction experiment in a brain scanner where the breach of a promise led both to monetary benefits for the promise breaker and to monetary costs for the interaction partner. The results of the study show that increased activity in areas of the brain playing an important role in processes of emotion and control accompany the breach of a promise. This pattern of brain activity suggests that breaking a promise triggers an emotional conflict in the promise breaker due to the suppression of an honest response.

Furthermore, the most important finding of the study enabled the researchers to show that "perfidious" patterns of brain activity even allow the prediction of future behavior. Indeed, experimental subjects who ultimately keep a promise and those who eventually break one act exactly the same at the time the promise is made - both swear to keep their word. Brain activity at this stage, however, often exposes the subsequent promise breakers.

Catching culprits

As neuroscientist Thomas Baumgartner elucidates, these findings indicate that brain activity measurements may already reveal malevolent intentions at a point in time prior to commitment of a dishonest or deceitful act. "Such a finding thus permits the speculation that the measurement of brain activity could be applied in the (distant) future not only to catch culprits, but even beyond this perhaps to aid in the prevention of fraudulent and criminal intrigues - a vision already made reality in the science fiction film 'Minority Report'."

"We've discovered critical elements of the neuronal basis of broken promises," economist Ernst Fehr explains. "In light of the significance of promises in everyday, interpersonal cohabitation in society, these findings offer the prospect of being able to fathom and better understand the brain physiological basis of pro-social and especially of antisocial behavior in general."

Original article:

Thomas Baumgartner, Urs Fischbacher, Anja Feierabend, Kai Lutz and Ernst Fehr: The Neural Circuitry of a Broken Promise, Neuron, Vol. 64, No. 5, 2009

Contacts:

Thomas Baumgartner, Institute for Empirical Research in Economics, Laboratory of Social and Neural Systems Research, University of Zurich
Telephone: +41 44 634 50 97
t.baumgartner@iew.uzh.ch
Ernst Fehr, Director of the Institute for Empirical Research in Economics, University of Zurich,
Telephone: +41 44 634 37 09
efehr@iew.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>