Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bone marrow cell transplants to benefit those with heart disease

Two studies published in the latest issue of Cell Transplantation (18:12) may lead to new treatments for the treatment of heart diseases.

The first study, carried out by a team of Brazilian researchers, found that cell transplantation of bone marrow mononuclear cells (BMMCs) directly into the heart benefited patients suffering from refractory angina.

A separate study carried out by researchers in the Peoples' Republic of China found that apelin, a newly described inotropic peptide, improves heart function following transplantation of BMMCs.

The results of these studies and others are available on-line free of charge at .

ReACT ™ bone marrow cell transplants help refractory angina

A team of Brazilian researchers has evaluated the safety and efficacy of a surgical procedure involving multiple injections into the heart (intramyocardial) of a bone marrow mononuclear cells (BMMCs) formulation derived from the patient (autologous) called "Refractory Angina Cell Therapy (ReACT)". The researchers found that the procedure benefitted all eight of the refractory angina patients in the study, all of whom had previously received surgical revascularization.

"The large fraction of monocytes in the ReACT formula appears to be related to the new blood vessel growth, or angiogenesis, that restores perfusion on the myocardial ischemic areas after the cell transplantation," said corresponding author Dr. Nelson Americo Hossne, Jr. of the Paulista School of Medicine, Federal University of Sao Paulo. "For our patients, angina symptom relief began as early as three months post-procedure with continuing improvement through the twelfth month and sustained improvement past 18 months. Symptom relief improved in all patients, suggesting that the effect is sustained, not transitory."

According to Prof. Enio Buffolo, co-author from the same institution, up to 15 percent of patients with coronary artery disease present severe, disabling angina pectoris that cannot be controlled by combinations of current therapies, including drug therapy, coronary angioplasty, or coronary by-pass surgery.

"This results in a substantial decrease in the quality of life for the refractory angina patient," added Prof. Enio Buffolo.

Bone marrow is a natural source of a broad spectrum of cytokines involved in controlling angiogenic and inflammatory processes. Bone marrow white blood cells therefore play an important role in the angiogenic mechanism, contributing to the revascularization of the heart.

The researchers selected the intramyocardial route for injection based on prior experimental data showing higher myocardial stem cell uptake. Endpoints for patient improvement were based on the Canadian Cardiovascular Society Angina Classification (CCSAC) system. According to Dr. Hossne, the ReACT formulation, designed in compliance with Good Manufacturing Practices (GMP) standards criteria, was found to be safe and effective, supporting further study with a larger number of patients.

"Patient improvement by the subjective CCSAC measures was followed by a correlated reduction in the myocardium ischemic area," concluded Dr. Hossne. "This strongly suggests neoangiogenesis as the main mechanism of action for these cells."

Contact: Dr. Nelson Americo Hossne, Jr., Cardiovascular Surgery Division, Surgery Department, Paulista School of Medicine, Federal University of Sao Paulo, Botucato St.
740 Sao Paulo, Brazil ZIP 04023-900.
Tel: +55-11-8166-5050; fax: +55-11-5052-0386,
Apelin helps heart function after bone marrow transplant
Apelin, a newly described inotropic peptide (related to the force of heart muscle contraction) with important cardiovascular regulatory properties, contributes to functional improvement in patients with severe heart failure after they have undergone implantation with bone marrow mononuclear cells (BMMC). The study, carried out at the Navy General Hospital in Beijing, evaluated 40 patients with severe heart failure following myocardial infarction. Twenty patients were assigned to receive BMMC transplants and 20 received standard medication. Another 20 healthy patients were assigned as controls.

"Baseline levels of plasma apelin were significantly lower in all heart failure patients as compared to normal, healthy subjects," said corresponding author Dr. Lian Ru Gao. "However, in patients who underwent cell transplantation, apelin increased significantly from three to 21 days post-transplantation. This increase in apelin was also followed by significant improvement in cardiac function."

In patients who received standard treatment, there was no increase in apelin.

According to the researchers, apelin, known to be a potent inotropic agent, was recently recognized as an important regulator of myocardial cell specification and heart development. In addition, reports that apelin concentration decreased with heart function impairment led the researchers to hypothesize that bone marrow transplantation might play a role in improving heart function by releasing apelin.

"Our objective was to assess how apelin plasma levels changed post-transplantation as well as to determine the relationship between increased apelin levels and heart function," added Dr. Gao.

Apelin levels increased in all patients who received BMMCs, and cardiac function improved as reflected by the relief of dyspnea and other measures, and so the researchers concluded that apelin signaling may play an important role in the heart function improvement observed after BMMC transplantation.

"Increased apelin levels may act as a paracrine mediator produced from BMMCs and may play an important role in the treatment of heart failure through autocrine and paracrine mechanisms," Dr. Gao concluded.

"Both studies demonstrate a possible mechanistic approach in a clinical trial either via the role of monocytes or Apelin to improve cardiac function" said Dr. Amit Patel associate professor of surgery at the University of Utah School of Medicine and the cardiovascular, skin, other tissue section editor of Cell Transplantation ."These important findings further enhance the understanding of the use of bone marrow derived cell therapy for the treatment of cardiovascular disease.".

Contact: Dr. Lian Ru Gao, Department of Cardiology, Navy General Hospital, 6 Fucheng Road, Beijing 100037, China.
Tel: 011-86-10-88180197; fax: 011-86-10-68780127043,
The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at or Camillo Ricordi, MD at

News Release by Randolph Fillmore, Florida Science Communications.

David Eve | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>