Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cell transplants to benefit those with heart disease

24.02.2010
Two studies published in the latest issue of Cell Transplantation (18:12) may lead to new treatments for the treatment of heart diseases.

The first study, carried out by a team of Brazilian researchers, found that cell transplantation of bone marrow mononuclear cells (BMMCs) directly into the heart benefited patients suffering from refractory angina.

A separate study carried out by researchers in the Peoples' Republic of China found that apelin, a newly described inotropic peptide, improves heart function following transplantation of BMMCs.

The results of these studies and others are available on-line free of charge at http://www.ingentaconnect.com/content/cog/ct/ .

ReACT ™ bone marrow cell transplants help refractory angina

A team of Brazilian researchers has evaluated the safety and efficacy of a surgical procedure involving multiple injections into the heart (intramyocardial) of a bone marrow mononuclear cells (BMMCs) formulation derived from the patient (autologous) called "Refractory Angina Cell Therapy (ReACT)". The researchers found that the procedure benefitted all eight of the refractory angina patients in the study, all of whom had previously received surgical revascularization.

"The large fraction of monocytes in the ReACT formula appears to be related to the new blood vessel growth, or angiogenesis, that restores perfusion on the myocardial ischemic areas after the cell transplantation," said corresponding author Dr. Nelson Americo Hossne, Jr. of the Paulista School of Medicine, Federal University of Sao Paulo. "For our patients, angina symptom relief began as early as three months post-procedure with continuing improvement through the twelfth month and sustained improvement past 18 months. Symptom relief improved in all patients, suggesting that the effect is sustained, not transitory."

According to Prof. Enio Buffolo, co-author from the same institution, up to 15 percent of patients with coronary artery disease present severe, disabling angina pectoris that cannot be controlled by combinations of current therapies, including drug therapy, coronary angioplasty, or coronary by-pass surgery.

"This results in a substantial decrease in the quality of life for the refractory angina patient," added Prof. Enio Buffolo.

Bone marrow is a natural source of a broad spectrum of cytokines involved in controlling angiogenic and inflammatory processes. Bone marrow white blood cells therefore play an important role in the angiogenic mechanism, contributing to the revascularization of the heart.

The researchers selected the intramyocardial route for injection based on prior experimental data showing higher myocardial stem cell uptake. Endpoints for patient improvement were based on the Canadian Cardiovascular Society Angina Classification (CCSAC) system. According to Dr. Hossne, the ReACT formulation, designed in compliance with Good Manufacturing Practices (GMP) standards criteria, was found to be safe and effective, supporting further study with a larger number of patients.

"Patient improvement by the subjective CCSAC measures was followed by a correlated reduction in the myocardium ischemic area," concluded Dr. Hossne. "This strongly suggests neoangiogenesis as the main mechanism of action for these cells."

Contact: Dr. Nelson Americo Hossne, Jr., Cardiovascular Surgery Division, Surgery Department, Paulista School of Medicine, Federal University of Sao Paulo, Botucato St.
740 Sao Paulo, Brazil ZIP 04023-900.
Tel: +55-11-8166-5050; fax: +55-11-5052-0386,
Email: nelson.hossne@gmail.com
Apelin helps heart function after bone marrow transplant
Apelin, a newly described inotropic peptide (related to the force of heart muscle contraction) with important cardiovascular regulatory properties, contributes to functional improvement in patients with severe heart failure after they have undergone implantation with bone marrow mononuclear cells (BMMC). The study, carried out at the Navy General Hospital in Beijing, evaluated 40 patients with severe heart failure following myocardial infarction. Twenty patients were assigned to receive BMMC transplants and 20 received standard medication. Another 20 healthy patients were assigned as controls.

"Baseline levels of plasma apelin were significantly lower in all heart failure patients as compared to normal, healthy subjects," said corresponding author Dr. Lian Ru Gao. "However, in patients who underwent cell transplantation, apelin increased significantly from three to 21 days post-transplantation. This increase in apelin was also followed by significant improvement in cardiac function."

In patients who received standard treatment, there was no increase in apelin.

According to the researchers, apelin, known to be a potent inotropic agent, was recently recognized as an important regulator of myocardial cell specification and heart development. In addition, reports that apelin concentration decreased with heart function impairment led the researchers to hypothesize that bone marrow transplantation might play a role in improving heart function by releasing apelin.

"Our objective was to assess how apelin plasma levels changed post-transplantation as well as to determine the relationship between increased apelin levels and heart function," added Dr. Gao.

Apelin levels increased in all patients who received BMMCs, and cardiac function improved as reflected by the relief of dyspnea and other measures, and so the researchers concluded that apelin signaling may play an important role in the heart function improvement observed after BMMC transplantation.

"Increased apelin levels may act as a paracrine mediator produced from BMMCs and may play an important role in the treatment of heart failure through autocrine and paracrine mechanisms," Dr. Gao concluded.

"Both studies demonstrate a possible mechanistic approach in a clinical trial either via the role of monocytes or Apelin to improve cardiac function" said Dr. Amit Patel associate professor of surgery at the University of Utah School of Medicine and the cardiovascular, skin, other tissue section editor of Cell Transplantation ."These important findings further enhance the understanding of the use of bone marrow derived cell therapy for the treatment of cardiovascular disease.".

Contact: Dr. Lian Ru Gao, Department of Cardiology, Navy General Hospital, 6 Fucheng Road, Beijing 100037, China.
Tel: 011-86-10-88180197; fax: 011-86-10-68780127043,
Email: lianru@yahoo.com.cn
The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>