Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessels might predict prostate cancer behavior

05.11.2009
A diagnosis of prostate cancer raises the question for patients and their physicians as to how the tumor will behave. Will it grow quickly and aggressively and require continuous treatment, or slowly, allowing therapy and its risks to be safely delayed?

The answer may lie in the size and shape of the blood vessels that are visible within the cancer, according to research led by investigators at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute in collaboration with the Harvard School of Public Health.

The study of 572 men with localized prostate cancer indicates that aggressive or lethal prostate cancers tend to have blood vessels that are small, irregular and primitive in cross-section, while slow-growing or indolent tumors have blood vessels that look more normal.

The findings were published Oct. 26 in the Journal of Clinical Oncology.

"It's as if aggressive prostate cancers are growing faster and their blood vessels never fully mature," says study leader Dr. Steven Clinton, professor of medicine and a medical oncologist and prostate cancer specialist at Ohio State's Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute.

"Prostate cancer is very heterogeneous, and we need better tools to predict whether a patient has a prostate cancer that is aggressive, fairly average or indolent in its behavior so that we can better define a course of treatment – surgery, chemotherapy, radiotherapy, hormonal therapy, or potentially new drugs that target blood vessels – that is specific for each person's type of cancer," Clinton says.

"Similarly, if we can better determine at the time of biopsy or prostatectomy who is going to relapse, we can start treatment earlier, when the chance for a cure may be better."

Prostate cancer is the most common cancer in men and the second leading cause of cancer death in American men.

This study analyzed tumor samples and clinical outcome data from men participating in the Health Professionals Follow-Up Study, which involves 51,529 male North American dentists, optometrists, podiatrists, pharmacists and veterinarians.

After an average follow-up of 10 years, 44 of the 572 men had developed metastatic cancer or died of their cancer.

Men whose tumors had smaller vessel diameters were six times more likely to have aggressive tumors and die of their disease, and those with the most irregularly shaped vessels were 17 times more likely to develop lethal prostate cancer.

The findings were independent of Gleason score, a widely used predictor of prognosis based on a prostate tumor's microscopic appearance, and of prostate specific antigen (PSA) level, a blood test used to identify the presence of prostate cancer.

These findings currently apply to men with local disease, whose PSA is only modestly elevated, and who are younger and more likely to choose surgery.

"If our findings are validated by larger studies, particularly in biopsy specimens, the measurement of tumor blood vessel architecture might help determine the choice of therapy, with the goal of improving long-term survival."

Funding from the National Cancer Institute and the Prostate Cancer Foundation supported this research.

Doug Flowers | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer PSA blood flow blood vessel health services prostate prostate cancer

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>