Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessels might predict prostate cancer behavior

05.11.2009
A diagnosis of prostate cancer raises the question for patients and their physicians as to how the tumor will behave. Will it grow quickly and aggressively and require continuous treatment, or slowly, allowing therapy and its risks to be safely delayed?

The answer may lie in the size and shape of the blood vessels that are visible within the cancer, according to research led by investigators at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute in collaboration with the Harvard School of Public Health.

The study of 572 men with localized prostate cancer indicates that aggressive or lethal prostate cancers tend to have blood vessels that are small, irregular and primitive in cross-section, while slow-growing or indolent tumors have blood vessels that look more normal.

The findings were published Oct. 26 in the Journal of Clinical Oncology.

"It's as if aggressive prostate cancers are growing faster and their blood vessels never fully mature," says study leader Dr. Steven Clinton, professor of medicine and a medical oncologist and prostate cancer specialist at Ohio State's Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute.

"Prostate cancer is very heterogeneous, and we need better tools to predict whether a patient has a prostate cancer that is aggressive, fairly average or indolent in its behavior so that we can better define a course of treatment – surgery, chemotherapy, radiotherapy, hormonal therapy, or potentially new drugs that target blood vessels – that is specific for each person's type of cancer," Clinton says.

"Similarly, if we can better determine at the time of biopsy or prostatectomy who is going to relapse, we can start treatment earlier, when the chance for a cure may be better."

Prostate cancer is the most common cancer in men and the second leading cause of cancer death in American men.

This study analyzed tumor samples and clinical outcome data from men participating in the Health Professionals Follow-Up Study, which involves 51,529 male North American dentists, optometrists, podiatrists, pharmacists and veterinarians.

After an average follow-up of 10 years, 44 of the 572 men had developed metastatic cancer or died of their cancer.

Men whose tumors had smaller vessel diameters were six times more likely to have aggressive tumors and die of their disease, and those with the most irregularly shaped vessels were 17 times more likely to develop lethal prostate cancer.

The findings were independent of Gleason score, a widely used predictor of prognosis based on a prostate tumor's microscopic appearance, and of prostate specific antigen (PSA) level, a blood test used to identify the presence of prostate cancer.

These findings currently apply to men with local disease, whose PSA is only modestly elevated, and who are younger and more likely to choose surgery.

"If our findings are validated by larger studies, particularly in biopsy specimens, the measurement of tumor blood vessel architecture might help determine the choice of therapy, with the goal of improving long-term survival."

Funding from the National Cancer Institute and the Prostate Cancer Foundation supported this research.

Doug Flowers | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer PSA blood flow blood vessel health services prostate prostate cancer

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>