Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessels might predict prostate cancer behavior

05.11.2009
A diagnosis of prostate cancer raises the question for patients and their physicians as to how the tumor will behave. Will it grow quickly and aggressively and require continuous treatment, or slowly, allowing therapy and its risks to be safely delayed?

The answer may lie in the size and shape of the blood vessels that are visible within the cancer, according to research led by investigators at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute in collaboration with the Harvard School of Public Health.

The study of 572 men with localized prostate cancer indicates that aggressive or lethal prostate cancers tend to have blood vessels that are small, irregular and primitive in cross-section, while slow-growing or indolent tumors have blood vessels that look more normal.

The findings were published Oct. 26 in the Journal of Clinical Oncology.

"It's as if aggressive prostate cancers are growing faster and their blood vessels never fully mature," says study leader Dr. Steven Clinton, professor of medicine and a medical oncologist and prostate cancer specialist at Ohio State's Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute.

"Prostate cancer is very heterogeneous, and we need better tools to predict whether a patient has a prostate cancer that is aggressive, fairly average or indolent in its behavior so that we can better define a course of treatment – surgery, chemotherapy, radiotherapy, hormonal therapy, or potentially new drugs that target blood vessels – that is specific for each person's type of cancer," Clinton says.

"Similarly, if we can better determine at the time of biopsy or prostatectomy who is going to relapse, we can start treatment earlier, when the chance for a cure may be better."

Prostate cancer is the most common cancer in men and the second leading cause of cancer death in American men.

This study analyzed tumor samples and clinical outcome data from men participating in the Health Professionals Follow-Up Study, which involves 51,529 male North American dentists, optometrists, podiatrists, pharmacists and veterinarians.

After an average follow-up of 10 years, 44 of the 572 men had developed metastatic cancer or died of their cancer.

Men whose tumors had smaller vessel diameters were six times more likely to have aggressive tumors and die of their disease, and those with the most irregularly shaped vessels were 17 times more likely to develop lethal prostate cancer.

The findings were independent of Gleason score, a widely used predictor of prognosis based on a prostate tumor's microscopic appearance, and of prostate specific antigen (PSA) level, a blood test used to identify the presence of prostate cancer.

These findings currently apply to men with local disease, whose PSA is only modestly elevated, and who are younger and more likely to choose surgery.

"If our findings are validated by larger studies, particularly in biopsy specimens, the measurement of tumor blood vessel architecture might help determine the choice of therapy, with the goal of improving long-term survival."

Funding from the National Cancer Institute and the Prostate Cancer Foundation supported this research.

Doug Flowers | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer PSA blood flow blood vessel health services prostate prostate cancer

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>