Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood stem cell, leukemia link illuminated in UCSF-led study

17.08.2010
A UCSF-led team has discovered at least one key reason why blood stem cells are susceptible to developing the genetic mutations that can lead to adult leukemia. Their finding also may explain, they say, why some other age-related hematological disorders develop.

The study, reported in “Cell Stem Cell” (Aug. 6, 2010) and reviewed in Cell Stem Cell and Cell, opens a new frontier for studying the molecular underpinnings of adult leukemia.

The discovery also suggests a possible therapeutic strategy, the scientists say, for reducing the risk of leukemia that results from chemotherapy used to treat solid tumors.

Finally, it may explain why other types of adult stem cells are susceptible to accumulating potentially lethal mutations.

Blood stem cells, located in the bone marrow, give rise to all blood cells of the body, such as red blood cells, white blood cells, and platelets. During fetal development, the stem cells specialize, or differentiate, into these various cell types. During life, they incessantly repeat the process, replacing old or depleted blood cells. The population also continuously self-renews.

Like most other adult stem cells, blood stem cells maintain a resting, or “quiescent,” state when they are not differentiating or self-renewing. They do so to minimize stress caused by cellular respiration and errors in DNA replication, which can lead to DNA damage.

In the current study, conducted in the culture dish and mice, the team set out to determine if blood stem cells in the quiescent state were at greater risk for incurring genetic mutations in the process of repairing damaged DNA than were proliferating cells. Scientists have known that defects in DNA repair processes are associated with cancers, though they have known little about the mechanisms.

The team determined that both quiescent and proliferating blood stem cells have protective mechanisms ensuring their survival in response to exposure to ionizing irradiation, as occurs from such sources as the sun and X-rays.

However, they discovered that quiescent and proliferating blood stem cells initiate different types of DNA repair mechanisms once the cells have survived. Proliferating blood stem cells undergo DNA repair using a high-fidelity process known as homologous recombination, which has a minimal risk of acquiring mutations, as documented in the study.

Quiescent cells, on the other hand, use a mechanism known as nonhomologous end joining-mediated DNA repair, which often leads to misrepair of double strand breaks in the DNA. Such error prone repair can result in chromosomal deletions, insertions or translocations and subsequent genomic instability that can contribute to hematopoetic abnormalities. This, too, was documented in the study. The quiescent cells are limited to using the error prone NHEJ mechanism because of the constraint imposed by their cell cycle on the molecular composition of their DNA repair machinery.

“Our results demonstrate that quiescence is a double-edged sword, protecting hematopoetic stem cells from cellular stress but rendering them intrinsically vulnerable to mutagenesis following DNA damage,” says senior author Emmanuelle Passegué, PhD, associate professor of medicine (division of hematology/oncology) and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.

The finding, the result of “heroic” research begun four years ago by Mary Mohrin, a graduate student in the Passegué lab, upturns current dogma, says Passegué. “The thinking has been that blood stem cells must proliferate to acquire the mutations that drive tumor development. This work says, ‘not so.’”

While the repair mechanism used by the quiescent cells is defective, it is not detrimental for the body in evolutionary terms, says Passegué. “The blood stem cell system is designed to support the body through its sexually reproductive years, so the genome can be passed along. The ability of quiescent blood stem cells to quickly undergo DNA repair supports this goal, and the risk of acquiring enough mutations in these years to cause genomic instability is minimal.”

The problem occurs with age, she notes, as the cells have spent a lifetime responding to naturally occurring insults and the effects of X-rays, medications and chemotherapies.

On the positive side, she says, the finding suggests a strategy for reducing the risk of leukemia resulting from chemotherapy used to treat solid tumors. “Existing drugs, such as G-CSF and prostaglandins, could be used to induce hematopoetic stem cells to proliferate prior to the use of therapy with DNA damaging agents,” she says. “This could enhance DNA repair fidelity and reduce the risk of leukemia development.” She is discussing this possible tactic with UCSF clinical researchers.

On a lighter note, she reflects, “our discovery may be good PR for blood donations.” While acknowledging her rationale is a bit speculative, she says, “Bleeding is a good way to keep the blood stem cell pool in an active, or proliferative, state.”

Other UCSF co-authors were Matthew R. Warr and Keegan Barry-Holson, of the Passegué lab. Co-authors from other institutions were Emer Bourke and Ciaran G. Morrison, of the National University of Ireland, Galway, David Alexander, of the University of California, Santa Cruz, and Michelle M. Le Beau, of the University of Chicago.

Lead author Mohrin is funded by a pre-doctoral training grant from the California Institute for Regenerative Medicine. Other funding for the study included a CIRM New Investigator Award and Rita Allen Scholar Award to Passegué, a U.S. Public Health Service grant to Le Beau, and a Science Foundation Ireland award to Morrison.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Related links:

Cell Stem Cell paper (Aug. 6, 2010 print edition)
http://www.cell.com/cell-stem-cell/fulltext/S1934-5909%2810%2900329-2
Cell Stem Cell review (Aug. 6, 2010 print edition)
http://www.cell.com/cell-stem-cell/fulltext/S1934-5909%2810%2900340-1
Cell review (Aug. 6, 2010 print edition)
http://www.cell.com/fulltext/S0092-8674%2810%2900834-2
UCSF news release on Passegué lab Cancer Cell paper, 2009
http://news.ucsf.edu/releases/scientists-identify-key-gene-that-protects-against-leukemia
Passegué Cancer Cell paper 2009
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WWK-4W0YDHT-F&_user=4430&_coverDate=04%2F07%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&

_acct=C000059594&_version=1&_urlVersion=0&_userid=4430&md5=605488ff1f5da5a3fb0ad5a791a38359

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research
http://stemcell.ucsf.edu/

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>