Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blood protein triggers scars in the brain after injury

Animal study suggests new target that might help aid recovery for patients with traumatic injuries

A protein called fibrinogen that is known to help form blood clots also triggers scar formation in the brain and spinal cord, according to new research in the April 28 issue of the Journal of Neuroscience. Researchers found that fibrinogen carries a dormant factor that activates when it enters the brain after an injury, prompting brain cells to form a scar. Scars in the brain or spinal cord can block connections between nerve cells and often keep injury patients from reaching full recovery.

A fundamental question in studies of damage to the central nervous system has been the origin of the first signal for scar growth. In this study, a group of neuroscientists led by Katerina Akassoglou, PhD, of the Gladstone Institutes at the University of California, San Francisco, looked at molecules in the bloodstream.

"Our study shows that a blood clotting factor is an important player in glial scar formation," Akassoglou said. Current treatments to improve nerve cell regeneration after injury focus on minimizing existing scar tissue; this new result suggests that suppressing these blood proteins might be a way to stop scars from even forming, Akassoglou said.

After a traumatic injury in the nervous system, such as a stab wound or stroke, fibrinogen leaks from damaged blood vessels into the brain and scar tissue begins to form. This process cordons off the wounded area, but also prevents nerve cells from reconnecting and communicating with one another. Rewired nerve cells are essential if a patient is to regain normal function.

To determine what role fibrinogen plays in scar formation, the researchers used a mouse model of brain trauma. When fibrinogen was effectively removed from the blood stream, the mice had dramatically smaller scars after injury. The authors found that fibrinogen carries an inactive type of scar-inducing substance called TGF-ß that switches "on" when it encounters local cells in the brain. When the brain pathways associated with TGF-ß were blocked, scars didn't form.

"These new findings offer an entirely new avenue to explore potentially important therapeutic agents that interfere with this interesting function of fibrinogen," said Jerry Silver, PhD, of Case Western Reserve University, who was unaffiliated with the study. "This is the first time that a major blood-associated trigger of reactive scar-forming cells has been reported in the literature."

The research was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health, the American Heart Association, and the German Research Foundation.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. Akassoglou can be reached at

Kat Snodgrass | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>