Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind mice can 'see' thanks to special retinal cells

15.07.2010
It would make the perfect question for the popular television show "Are You Smarter than a 5th Grader:" What parts of the eye allow us to see?

The conventional wisdom: rods and cones. The human retina contains about 120 million rods, which detect light and darkness, shape and movement, and about 7 million cones, which in addition detect color. Without them, or so we are taught, our eyesight simply would not exist.

But that might not be true, according to a study -- published July 15 in the journal Neuron -- that provides new hope to people who have severe vision impairments or who are blind.

A team led by biologist Samer Hattar of The Johns Hopkins University's Krieger School of Arts and Sciences found that mice that didn't have any rods and cones function could still see -- and not just light, but also patterns and images -- courtesy of special photosensitive cells in the rodents' retinas. Until now, it was presumed that those cells, called intrinsically photosensitive Retinal Ganglion Cells, (or ipRGCs), didn't play a role in image formation, but instead served other functions, such as dictating when the animals went to sleep or woke up. (All mammals, including humans, have ipRGCs, as well as rods and cones.)

"Up until now, it was assumed that rods and cones were the only cells capable of detecting light to allow us to form images," said Hattar, who as an assistant professor in the Department of Biology, studies mammals' sleep-wake cycles, also called "circadian rhythms." "But our study shows that even mice which were blind could form low-acuity yet measurable images, using ipRGCs. The exciting thing is that, in theory at least, this means that a blind person could be trained to use his or her ipRGCs to perform simple tasks that require low visual acuity."

"Visual acuity" refers to the sharpness or clarity of a person's (or animal's) vision. Someone with so-called "20/20 vision" can see clearly at a distance of 20 feet what the "average" human being can see at that distance. In contrast, a person with "20/100" vision would have to stand 20 feet away from, for instance, an eye chart that the average person could read from 100 feet away. People with very low visual acuity (worse than "20/100" with corrective lenses) are considered "legally blind."

In addition to providing hope for people with serious vision problems, Hattar's findings hint that, in the past, mammals may have used their ipRGCs for sight/image formation, but during the course of evolution, that function was somehow taken over by rods and cones.

The study also concludes that, far from being homogenous, ipRGCs come in five different subtypes, with the possibility that each may have different light-detecting physiological functions.

To conduct the study, the team used a special system to genetically label cells and then "trace" them to the rodents' brains before subjecting the mice to a number of vision tests. In one, mice followed the movements of a rotating drum, a test that assessed the animals' ability to track moving objects. In another, the rodents were placed within a "Y"-shaped maze and challenged to escape by selecting the lever that would let them out. That lever was associated with a certain visual pattern. The mice that were blind -- they lacked rods, cones and ipRGCs -- couldn't find that lever. But those with only ipRGCs could.

"These studies are extremely exciting to me, because they show that even a simple light-detecting system like ipRGCs has incredible diversity and may support low-acuity vision, allowing us to peer into evolution to understand how simple vision may have originally evolved before the introduction of the fancy photoreceptors rods and cones," Hattar said.

Hattar's team worked on this study in collaboration with groups led by David Berson of Brown University and Glen Prusky of Weill Cornell Medical College. It was supported by grants from the National Institutes of Health, the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation.

Related links:

http://www.bio.jhu.edu/Faculty/Hattar/Default.html
http://neuroscience.jhu.edu/SamerHattar.php

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>