Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind lead the way in brave new world of tactile technology

02.07.2014

Imagine feeling a slimy jellyfish, a prickly cactus or map directions on your iPad mini Retina display, because that’s where tactile technology is headed. But you’ll need more than just an index finger to feel your way around.

New research at UC Berkeley has found that people are better and faster at navigating tactile technology when using both hands and several fingers.


Disney’s research hub is developing electrostatic displays, like this jellyfish, that you can actually feel.


Study participants navigated a tactile map

Moreover, blind people in the study outmaneuvered their sighted counterparts – especially when using both hands and several fingers – possibly because they’ve developed superior cognitive strategies for finding their way around.

Bottom line: Two hands are better than one in the brave new world of tactile or “haptic” technology, and the visually impaired can lead the way.

”Most sighted people will explore these types of displays with a single finger. But our research shows that this is a bad decision. No matter what the task, people perform better using multiple fingers and hands,” said Valerie Morash, a doctoral student in psychology at UC Berkeley, and lead author of the study just published in the online issue of the journal, Perception.

“We can learn from blind people how to effectively use multiple fingers, and then teach these strategies to sighted individuals who have recently lost vision or are using tactile displays in high-stakes applications like controlling surgical robots,” she added.

For decades, scientists have studied how receptors on the fingertips relay information to the brain. Now, researchers at Disney and other media companies are implementing more tactile interfaces, which use vibrations, and electrostatic or magnetic feedback for users to find their way around, or experience how something feels.

In this latest study, Morash and fellow researchers at UC Berkeley and the Smith-Kettlewell Eye Research Institute in San Francisco tested 14 blind adults and 14 blindfolded sighted adults on several tasks using a tactile map.

Using various hand and finger combinations, they were tasked with such challenges as finding a landmark or figuring out if a road looped around.

Overall, both blind and sighted participants performed better when using both hands and several fingers, although blind participants were, on average, 50 percent faster at completing the tasks, and even faster when they used both hands and all their fingers.

“As we move forward with integrating tactile feedback into displays, these technologies absolutely need to support multiple fingers,” Morash said. “This will promote the best tactile performance in applications such as the remote control of robotics used in space and high-risk situations, among other things.”

Yasmin Anwar | Eurek Alert!

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

Rapid adaptation to a changing environment

28.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>