Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bitemark Evidence and Analysis Should Be Approached with Caution

21.09.2009
Against the backdrop of last week's Congressional hearing into the future of forensic science, researchers from the University at Buffalo's Laboratory for Forensic Odontology Research in the School of Dental Medicine, have published a landmark paper on the controversial topic of bitemark analysis.

The Congressional hearing focused on the findings of a National Academy of Sciences (NAS) report on the scientific basis of forensic disciplines. Among the pattern evidence fields (fingerprints, tool marks, etc.) that were reviewed in the NAS report, bitemark analysis received critical commentary.

During the hearing, Innocence Project co-founder Peter Neufeld introduced Roy Brown, wrongfully convicted on bitemark evidence and later exonerated through DNA analysis.

In anticipation of the NAS report, the new UB study published in the Journal of Forensic Sciences challenges the commonly held belief that every bitemark can be perpetrator identified.

"Bitemark identification is not as reliable as DNA identification," explains the study's lead author Raymond G. Miller, D.D.S., UB clinical associate professor of oral diagnostic sciences.

"With DNA, the probability of an individual not matching another can be calculated," he says. "In bitemark analysis, there have been few studies that looked at how many people's teeth could have made the bite."

Miller's co-authors include UB's Peter J. Bush; Robert Dorion, D.D.S., DABFO, UB adjunct professor of oral diagnostic sciences; and Mary A. Bush, D.D.S., UB assistant professor of restorative dentistry. Dorion is the editor of the only comprehensive textbook on the subject of bitemarks in forensic science, Bitemark Evidence: A Color Atlas and Text, and is currently the odontology section representative to the board of directors of the American Academy of Forensic Sciences.

The current study investigated three main questions: is it possible to determine biter identity among people with similarly aligned teeth; is it possible to determine how many individuals from a larger sample might also be considered as the biter; and, if there is bite pattern distortion, is it enough to rule out a specific biter while still including a non-biter?

To answer these questions, the researchers gathered 100 stone dental models (replicas of the dentition), which were measured and divided into 10 groups based upon the misalignment patterns of the teeth. After randomly selecting one model from each of the 10 groups, the researchers impressed bitemarks on cadaver skin. After the bitemarks were created, they were then photographed and the indentations were compared to the dentitions using overlays created with photographic software.

The authors are one of the first to use a human skin model rather than animal models or non-elastic biting substrate, such as wax or Styrofoam. Current human subject restrictions limit experimentation on living subjects.

"Living bitten tissue may bleed or bruise," explains Miller. "The initial bitemark indentations rebound shortly after infliction often leaving a diffuse bruising that may be difficult to measure accurately. The indentations produced in our study represented the best conditions for measurement."

The results indicated that when dental alignments were similar, it was difficult to distinguish which set of teeth made the bites. Distortion noted in the bitemarks allowed matches even from different alignment groups. Therefore, the researchers concluded that bitemarks should be very carefully evaluated in criminal investigations where perpetrator identity is the focus of a case.

As Miller notes, "In the past 10 years, the number of court cases involving bitemark evidence that have been overturned led us to question the reasons for the erroneous bitemark identification. It's important to recognize the serious consequences of a misidentification for the accused, the victim, the families involved, the justice system and the possibility that the perpetrator is still at large."

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. The School of Dental Medicine is one of five schools that constitute UB's Academic Health Center. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Sara Saldi | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>