Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Team Obtains $4.9 Million for Trauma Research

14.11.2008
A group of nine international car manufacturers and suppliers is awarding $4.9 million to the Virginia Tech - Wake Forest University School of Biomedical Engineering and Science's Center for Injury Biomechanics, known internationally for its research on trauma and how it affects the human body.

The group, the Global Human Body Models Consortium (www.ghbmc.com), is funding the Center for Injury Biomechanics (www.cib.vt.edu) to conduct a study to produce a better understanding of what happens to individuals subjected to body trauma. “Initially, four sizes of individuals will be modeled to cover the maximum range of normal sizes in the world,” said Joel Stitzel, associate professor of biomedical engineering at Wake Forest. “These models will match the industry standard dummies in use today.”

The consortium will then develop scalable models from the unified computer model developed by the Center for Injury Biomechanics. The scalable models will represent other body shapes and sizes, as well as the differences for children and the elderly. The center will be centrally involved in this effort, along with numerous members of the School of Biomedical Engineering and Sciences.

Better crash safety technology is the ultimate goal of the participants in the Global Human Body Models Consortium. With the consortium, the automotive industry is consolidating its efforts into one international activity that advances crash safety technology. The computer models, which represent human beings in extremely intricate detail, could help investigators determine and better understand injuries that are likely to result from a vehicle crash. The Center for Injury Biomechanics will act as the integration center for the study, with Stitzel serving as the lead investigator, in collaboration with the Hongik University in Korea.

The grant also calls for it to act as the center of expertise for the abdomen portion of the computer model. Warren Hardy, associate professor of mechanical engineering in Virginia Tech’s College of Engineering (www.eng.vt.edu), in collaboration with the French National Institute for Transportation and Safety Research, will lead this effort. “Material properties, tolerance of tissues and systems, and the local structural responses during impact will be measured throughout the course of this project in order to develop an improved finite element tool for the evaluation of local abdominal injury,” Hardy said.

The Center for Injury Biomechanics is conducting the majority of the empirical work, and the French National Institute for Transportation and Safety Research is performing most of the numerical investigations for the study of the abdomen’s response to trauma.

About the Center for Injury Biomechanics

The Center for Injury Biomechanics has more than 40 researchers working on projects with applications in automobile safety, sports biomechanics, military restraints, and consumer products. With 15,000-square-feet of research space, the center is equipped to perform everything from large-scale sled crash tests to the smallest cellular biomechanics study.

The center’s research projects are supported by awards from the National Institutes of Health, Centers for Disease Control and Prevention, National Science Foundation, U.S. Department of Transportation, and the U.S. Department of Defense, as well as a range of industrial sponsors. Since its inception in 2003, the center has been awarded over $25 million in research funding. “We are at a critical time where our research and technologies can be effectively applied to save lives and reduce injuries,” said Stefan Duma, Virginia Tech professor of mechanical, and director of the Center for Injury Biomechanics.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>