Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Team Obtains $4.9 Million for Trauma Research

14.11.2008
A group of nine international car manufacturers and suppliers is awarding $4.9 million to the Virginia Tech - Wake Forest University School of Biomedical Engineering and Science's Center for Injury Biomechanics, known internationally for its research on trauma and how it affects the human body.

The group, the Global Human Body Models Consortium (www.ghbmc.com), is funding the Center for Injury Biomechanics (www.cib.vt.edu) to conduct a study to produce a better understanding of what happens to individuals subjected to body trauma. “Initially, four sizes of individuals will be modeled to cover the maximum range of normal sizes in the world,” said Joel Stitzel, associate professor of biomedical engineering at Wake Forest. “These models will match the industry standard dummies in use today.”

The consortium will then develop scalable models from the unified computer model developed by the Center for Injury Biomechanics. The scalable models will represent other body shapes and sizes, as well as the differences for children and the elderly. The center will be centrally involved in this effort, along with numerous members of the School of Biomedical Engineering and Sciences.

Better crash safety technology is the ultimate goal of the participants in the Global Human Body Models Consortium. With the consortium, the automotive industry is consolidating its efforts into one international activity that advances crash safety technology. The computer models, which represent human beings in extremely intricate detail, could help investigators determine and better understand injuries that are likely to result from a vehicle crash. The Center for Injury Biomechanics will act as the integration center for the study, with Stitzel serving as the lead investigator, in collaboration with the Hongik University in Korea.

The grant also calls for it to act as the center of expertise for the abdomen portion of the computer model. Warren Hardy, associate professor of mechanical engineering in Virginia Tech’s College of Engineering (www.eng.vt.edu), in collaboration with the French National Institute for Transportation and Safety Research, will lead this effort. “Material properties, tolerance of tissues and systems, and the local structural responses during impact will be measured throughout the course of this project in order to develop an improved finite element tool for the evaluation of local abdominal injury,” Hardy said.

The Center for Injury Biomechanics is conducting the majority of the empirical work, and the French National Institute for Transportation and Safety Research is performing most of the numerical investigations for the study of the abdomen’s response to trauma.

About the Center for Injury Biomechanics

The Center for Injury Biomechanics has more than 40 researchers working on projects with applications in automobile safety, sports biomechanics, military restraints, and consumer products. With 15,000-square-feet of research space, the center is equipped to perform everything from large-scale sled crash tests to the smallest cellular biomechanics study.

The center’s research projects are supported by awards from the National Institutes of Health, Centers for Disease Control and Prevention, National Science Foundation, U.S. Department of Transportation, and the U.S. Department of Defense, as well as a range of industrial sponsors. Since its inception in 2003, the center has been awarded over $25 million in research funding. “We are at a critical time where our research and technologies can be effectively applied to save lives and reduce injuries,” said Stefan Duma, Virginia Tech professor of mechanical, and director of the Center for Injury Biomechanics.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>