Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Team Obtains $4.9 Million for Trauma Research

14.11.2008
A group of nine international car manufacturers and suppliers is awarding $4.9 million to the Virginia Tech - Wake Forest University School of Biomedical Engineering and Science's Center for Injury Biomechanics, known internationally for its research on trauma and how it affects the human body.

The group, the Global Human Body Models Consortium (www.ghbmc.com), is funding the Center for Injury Biomechanics (www.cib.vt.edu) to conduct a study to produce a better understanding of what happens to individuals subjected to body trauma. “Initially, four sizes of individuals will be modeled to cover the maximum range of normal sizes in the world,” said Joel Stitzel, associate professor of biomedical engineering at Wake Forest. “These models will match the industry standard dummies in use today.”

The consortium will then develop scalable models from the unified computer model developed by the Center for Injury Biomechanics. The scalable models will represent other body shapes and sizes, as well as the differences for children and the elderly. The center will be centrally involved in this effort, along with numerous members of the School of Biomedical Engineering and Sciences.

Better crash safety technology is the ultimate goal of the participants in the Global Human Body Models Consortium. With the consortium, the automotive industry is consolidating its efforts into one international activity that advances crash safety technology. The computer models, which represent human beings in extremely intricate detail, could help investigators determine and better understand injuries that are likely to result from a vehicle crash. The Center for Injury Biomechanics will act as the integration center for the study, with Stitzel serving as the lead investigator, in collaboration with the Hongik University in Korea.

The grant also calls for it to act as the center of expertise for the abdomen portion of the computer model. Warren Hardy, associate professor of mechanical engineering in Virginia Tech’s College of Engineering (www.eng.vt.edu), in collaboration with the French National Institute for Transportation and Safety Research, will lead this effort. “Material properties, tolerance of tissues and systems, and the local structural responses during impact will be measured throughout the course of this project in order to develop an improved finite element tool for the evaluation of local abdominal injury,” Hardy said.

The Center for Injury Biomechanics is conducting the majority of the empirical work, and the French National Institute for Transportation and Safety Research is performing most of the numerical investigations for the study of the abdomen’s response to trauma.

About the Center for Injury Biomechanics

The Center for Injury Biomechanics has more than 40 researchers working on projects with applications in automobile safety, sports biomechanics, military restraints, and consumer products. With 15,000-square-feet of research space, the center is equipped to perform everything from large-scale sled crash tests to the smallest cellular biomechanics study.

The center’s research projects are supported by awards from the National Institutes of Health, Centers for Disease Control and Prevention, National Science Foundation, U.S. Department of Transportation, and the U.S. Department of Defense, as well as a range of industrial sponsors. Since its inception in 2003, the center has been awarded over $25 million in research funding. “We are at a critical time where our research and technologies can be effectively applied to save lives and reduce injuries,” said Stefan Duma, Virginia Tech professor of mechanical, and director of the Center for Injury Biomechanics.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>