Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Team Obtains $4.9 Million for Trauma Research

14.11.2008
A group of nine international car manufacturers and suppliers is awarding $4.9 million to the Virginia Tech - Wake Forest University School of Biomedical Engineering and Science's Center for Injury Biomechanics, known internationally for its research on trauma and how it affects the human body.

The group, the Global Human Body Models Consortium (www.ghbmc.com), is funding the Center for Injury Biomechanics (www.cib.vt.edu) to conduct a study to produce a better understanding of what happens to individuals subjected to body trauma. “Initially, four sizes of individuals will be modeled to cover the maximum range of normal sizes in the world,” said Joel Stitzel, associate professor of biomedical engineering at Wake Forest. “These models will match the industry standard dummies in use today.”

The consortium will then develop scalable models from the unified computer model developed by the Center for Injury Biomechanics. The scalable models will represent other body shapes and sizes, as well as the differences for children and the elderly. The center will be centrally involved in this effort, along with numerous members of the School of Biomedical Engineering and Sciences.

Better crash safety technology is the ultimate goal of the participants in the Global Human Body Models Consortium. With the consortium, the automotive industry is consolidating its efforts into one international activity that advances crash safety technology. The computer models, which represent human beings in extremely intricate detail, could help investigators determine and better understand injuries that are likely to result from a vehicle crash. The Center for Injury Biomechanics will act as the integration center for the study, with Stitzel serving as the lead investigator, in collaboration with the Hongik University in Korea.

The grant also calls for it to act as the center of expertise for the abdomen portion of the computer model. Warren Hardy, associate professor of mechanical engineering in Virginia Tech’s College of Engineering (www.eng.vt.edu), in collaboration with the French National Institute for Transportation and Safety Research, will lead this effort. “Material properties, tolerance of tissues and systems, and the local structural responses during impact will be measured throughout the course of this project in order to develop an improved finite element tool for the evaluation of local abdominal injury,” Hardy said.

The Center for Injury Biomechanics is conducting the majority of the empirical work, and the French National Institute for Transportation and Safety Research is performing most of the numerical investigations for the study of the abdomen’s response to trauma.

About the Center for Injury Biomechanics

The Center for Injury Biomechanics has more than 40 researchers working on projects with applications in automobile safety, sports biomechanics, military restraints, and consumer products. With 15,000-square-feet of research space, the center is equipped to perform everything from large-scale sled crash tests to the smallest cellular biomechanics study.

The center’s research projects are supported by awards from the National Institutes of Health, Centers for Disease Control and Prevention, National Science Foundation, U.S. Department of Transportation, and the U.S. Department of Defense, as well as a range of industrial sponsors. Since its inception in 2003, the center has been awarded over $25 million in research funding. “We are at a critical time where our research and technologies can be effectively applied to save lives and reduce injuries,” said Stefan Duma, Virginia Tech professor of mechanical, and director of the Center for Injury Biomechanics.

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>