Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity Loss Is Detrimental to Your Health: Intact Ecosystems Can Help Ward Off Infectious Disease

03.12.2010
Protecting biodiversity is more than an act of environmental preservation; it can be a matter of self-preservation, according to a study that shows healthy biodiversity in intact ecosystems helps ward off infectious disease.

“As buffering species disappear, rates of disease spread can accelerate,” says Drew Harvell, professor of Ecology and Evolutionary Biology at Cornell University and a co-author of the study, “Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases,” which is published online in the current issue of Nature. Felicia Keesing, of Bard College, is the paper’s lead author.

“More broadly, biodiversity per se seems to protect organisms, including humans, from transmission of infectious diseases in many cases,” the authors note. “Preserving biodiversity in these cases, and perhaps generally, may reduce the incidence of established pathogens.”

The authors argue that, in a diverse ecosystem, often only a fraction of organisms are susceptible to particular diseases or parasites – the presence of buffering species means the spread of a malady is muted. One example is Lyme Disease, which can be transmitted to humans by ticks carried by white-footed mice. In intact communities with opossums, the ticks attack opossums, but they fail to survive on opossums, thus reducing the transmission rate of Lyme Disease.

“This discovery of the buffering effect is most clear on land where we know all the links in the transmission of some diseases. In the oceans, we are dealing with a vast new equation relating to disease spread, climate change and biodiversity,” Harvell said. “Disease outbreaks are being accelerated by climate warming before we even know the links in the disease transmission chain.”

The report recommends stringent oversight of farming animals on land and fishes in the oceans to limit the chances of diseases spreading from farmed animals to people or wildlife.

The research is funded by the National Science Foundation, National Institutes of Health Ecology of Infectious Disease Program and the U.S. Environmental Protection Agency.

For information about environmental research and sustainability at Cornell, visit: http://www.sustainablefuture.cornell.edu/research/environment.php

Cornell’s David R. Atkinson Center for a Sustainable Future:
http://www.sustainablefuture.cornell.edu/index.php

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>