Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity loss correlates with increases in infectious disease

02.12.2010
Habitat destruction and species extinction may lead to an increase in diseases that infect humans and other species, according to a paper in the journal Nature co-authored by a University of Florida ecologist.

In the paper to be published Thursday, UF biology professor Robert D. Holt and his colleagues reported that by reviewing studies from a wide range of systems, including data from plants, animals and bacteria, they were able to relate dimensions of environmental loss, and in particular species loss, with incidence of infectious disease.

The study –- which was led by biologist Felicia Keesing of Bard College –- focused on diseases on the rise, such as West Nile virus, Lyme disease and Hantavirus.

“The general degradation of biodiversity because of land use transformation, combined with climate change, overharvesting, and so forth, is likely to have many perverse consequences for emerging pathogens,” said Holt, a UF Eminent Scholar associated with the Emerging Pathogens Institute. “You have to think both as an ecologist and an infectious disease specialist to grapple with questions like this.”

Some pathogens can flourish under less biologically diverse conditions, such as in areas where top predators or other key species become extinct.

To illustrate this point, the researchers use an example study of how a dwindling population of opossums in Virginia forests contributes to the spread of Lyme disease. Opossums are able to effectively kill disease-carrying ticks when the ticks attach to them, helping to limit the population of the parasite. When opossum populations decline, tick populations flourish and feed off the Virginia white-footed mouse, which is less able to defend itself from the blood-feeding ticks. In addition, the mouse’s ability to reproduce quickly and in great numbers means there are more vulnerable hosts available. Species that are resilient to human impacts may often have correlated biological traits that permit them to be effective hosts of pathogens.

The area and spatial arrangement of natural spaces also can influence the likelihood for diseases to jump from animals to humans. Experts have linked the recent rapid rise of Avian influenza in Asia to bird habitat loss. Holt said Avian influenza is a worry for people in the United States, but in contrast to Asia, many U.S. national wildlife reserves provide refuges for migratory birds that helps to keep the illness at bay, whereas wetland degradation in other parts of the world may force migrating waterfowl into sites where they have contact with domestic fowl.

Global biodiversity has declined rapidly in the last 60 years and extinction rates are projected to rise dramatically in the next five decades. The patterns described in the paper suggest that there will be correlated, complex effects on disease incidence and emergence, Holt said.

Biodiversity also occurs within individual hosts, such as with humans. Environmental changes, including the overuse of antibiotics, can result in a less bacteria-rich environment within the human body. In the Nature article, the experts suggest that a decline in overall biodiversity will affect the bacterial richness and composition of the human community of microbial symbionts, making the body less able ward off disease.

“When a clinical trial of a drug shows that it works,” said Keesing, the paper’s lead author, “the trial is halted so the drug can be made available. In a similar way, the protective effect of biodiversity is clear enough that we need to begin implementing policies to preserve it now.”

The National Science Foundation and the National Institutes of Health Ecology of Infectious Diseases Program funded this research.

Other co-authors of the paper are Samuel Myers of Harvard Medical School; Charles Mitchell of the University of North Carolina at Chapel Hill; Kate Jones of the Zoological Society of London; Anna Jolles at Oregon State University; Peter Hudson of Penn State University; Drew Harvell of Cornell University; Peter Daszak and Tiffany Bogich of the Wildlife Trust in New York City; and Lisa Belden of Virginia Tech.

Robert D. Holt | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>