Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity in the balance

04.09.2014

A new study calls into question the evolutionary stability of an ecological explanation of biodiversity.

The study, published in the journal PLOS ONE, brings together evolutionary theory and ecology to explore one of the big questions in ecology: How is biodiversity developed and maintained?

“This is a fundamental question if we want to protect biodiversity—what exactly do we need to protect?” says International Institute for Applied Systems Analysis (IIASA) Evolution and Ecology Program Director Ulf Dieckmann, who led the study together with Florian Hartig from the University of Freiburg, collaborating with colleagues from the Helmholtz Centre for Environmental Research in Leipzig and the French National Center for Scientific Research in Grenoble.

In introductory biology courses, students learn that two species cannot occupy the same niche, and that the world’s biodiversity is thus closely related to the number of niches that exist. But in fact, in the real world this is often not true—it appears that organisms can and do occupy the same niche, meaning that they feed on the same resource, in the same place, at the same time.

“For example,” says Dieckmann, “herring and sprat in the Baltic Sea occupy very similar ecological niches, feeding on the same kinds of plankton. How such species can robustly co-exist is a key question for modern ecology.”

One theory, known as Relative Nonlinearity of Competition (RNC), suggests that such species can co-exist because they react differently to fluctuations in resources or other limiting factors—such as algal blooms for fish, or rainfall variations for mosquitoes—causing changes in the environment that temporarily benefit the other species. This leads to a dynamic relationship in which each species temporarily benefits from the other’s influence on the environment, holding the two in balance.

“The idea has held up well in theory, but it’s difficult to test in practice,” says Dieckmann. So he and his colleagues decided to test RNC from another perspective, using three standard evolutionary models. “We wanted to find out what happens to the RNC mechanism when we allow the species to adapt.”

Their results show that RNC is typically not stable if one considers evolution: in all three models, the species differences that supported their coexistence disappear through adaptation. This means that, evolutionarily, the two coexisting species are outcompeted and replaced by a single species. Dieckmann says, “We thus suggest that the potential of this mechanism for explaining the origin and maintenance of biodiversity might have been overestimated in the literature.”

The scientists conclude that further research will be needed to understand what other mechanisms support biodiversity.

Dieckmann says that the study points to the importance of interdisciplinary research, such as that conducted at IIASA. “Because evolution and ecology research are most often done in isolation, nobody had yet thought to ask whether this mechanism was evolutionarily stable.”

Reference:
Hartig F, Münkemüller T, Johst K, Dieckmann U. 2014. On the sympatric evolution and evolutionary stability of coexistence by relative nonlinearity of competition. PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0094454

For more information contact:
Ulf Dieckmann
Program Director
Evolution and Ecology
+43(0) 2236 807 386
dieckmann@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://dx.plos.org/10.1371/journal.pone.0094454

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis Biodiversity Ecology Evolution IIASA Oceania RNC ecology leads means species

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>