Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity in the balance

04.09.2014

A new study calls into question the evolutionary stability of an ecological explanation of biodiversity.

The study, published in the journal PLOS ONE, brings together evolutionary theory and ecology to explore one of the big questions in ecology: How is biodiversity developed and maintained?

“This is a fundamental question if we want to protect biodiversity—what exactly do we need to protect?” says International Institute for Applied Systems Analysis (IIASA) Evolution and Ecology Program Director Ulf Dieckmann, who led the study together with Florian Hartig from the University of Freiburg, collaborating with colleagues from the Helmholtz Centre for Environmental Research in Leipzig and the French National Center for Scientific Research in Grenoble.

In introductory biology courses, students learn that two species cannot occupy the same niche, and that the world’s biodiversity is thus closely related to the number of niches that exist. But in fact, in the real world this is often not true—it appears that organisms can and do occupy the same niche, meaning that they feed on the same resource, in the same place, at the same time.

“For example,” says Dieckmann, “herring and sprat in the Baltic Sea occupy very similar ecological niches, feeding on the same kinds of plankton. How such species can robustly co-exist is a key question for modern ecology.”

One theory, known as Relative Nonlinearity of Competition (RNC), suggests that such species can co-exist because they react differently to fluctuations in resources or other limiting factors—such as algal blooms for fish, or rainfall variations for mosquitoes—causing changes in the environment that temporarily benefit the other species. This leads to a dynamic relationship in which each species temporarily benefits from the other’s influence on the environment, holding the two in balance.

“The idea has held up well in theory, but it’s difficult to test in practice,” says Dieckmann. So he and his colleagues decided to test RNC from another perspective, using three standard evolutionary models. “We wanted to find out what happens to the RNC mechanism when we allow the species to adapt.”

Their results show that RNC is typically not stable if one considers evolution: in all three models, the species differences that supported their coexistence disappear through adaptation. This means that, evolutionarily, the two coexisting species are outcompeted and replaced by a single species. Dieckmann says, “We thus suggest that the potential of this mechanism for explaining the origin and maintenance of biodiversity might have been overestimated in the literature.”

The scientists conclude that further research will be needed to understand what other mechanisms support biodiversity.

Dieckmann says that the study points to the importance of interdisciplinary research, such as that conducted at IIASA. “Because evolution and ecology research are most often done in isolation, nobody had yet thought to ask whether this mechanism was evolutionarily stable.”

Reference:
Hartig F, Münkemüller T, Johst K, Dieckmann U. 2014. On the sympatric evolution and evolutionary stability of coexistence by relative nonlinearity of competition. PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0094454

For more information contact:
Ulf Dieckmann
Program Director
Evolution and Ecology
+43(0) 2236 807 386
dieckmann@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://dx.plos.org/10.1371/journal.pone.0094454

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis Biodiversity Ecology Evolution IIASA Oceania RNC ecology leads means species

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>