Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Bilingual Persons Have Distinct Language Areas in the Brain?

09.07.2009
A new study carried out at the University of Haifa sheds light on how first and second languages are represented in the brain of a bilingual person.

A unique single case study that was tested by Dr. Raphiq Ibrahim of the Department of Learning Disabilities and published in the Behavioral and Brain Functions journal, showed that first and second languages are represented in different places in the brain.

The question of how different languages are represented in the human brain is still unclear and, moreover, it is not certain how languages of different and similar linguistic structures are represented. Many studies have found evidence that all the languages that we acquire in the course of our life are represented in one area of the brain. However, other studies have found evidence that a second language is dissociated from the representation of a mother tongue.

According to Dr. Ibrahim, there are various ways of clarifying this question, but the best way to examine the brain's representation of two languages is by assessing the effects of brain damage on a mother tongue and on the second language of the bilingual individual. "The examination of such cases carries much significance, since it is rare that we can find people who fluently speak two languages and who have sustained brain damage that has selectively affected one of the languages. Moreover, most of the evidence in this field is derived from clinical observations of brain damage in English- and Indo-European-speaking patients, and few studies have been carried out on individuals who speak other languages, especially Semitic languages such as Hebrew and Arabic, until the present study," he added.

The present case examined a 41-year-old bilingual patient whose mother tongue is Arabic and who had fluent command of Hebrew as a second language, at a level close to that of his mother tongue. The individual is a university graduate who passed entrance exams in Hebrew and used the language frequently in his professional life. He suffered damage to the brain that was expressed in a language disorder (aphasia) that remained after completing a course of rehabilitation. During rehabilitation, a higher level of improvement in use of the Arabic language was recorded, and less for the use of Hebrew. After rehabilitation, the patient's language skills were put through various standardized tests that examined a range of levels language skills in the two languages, alongside other cognitive tests. Most of the tests revealed that damage to the patient's Hebrew skills were significantly more severe than the damage to his Arabic skills.

According to Dr. Ibrahim, even if this selective impairment of the patient's linguistic capabilities does not constitute sufficient evidence to develop a structural model to represent languages in the brain, this case does constitute an important step in this direction, particularly considering that it deals with unique languages that have not yet been studied and which are phonetically, morphologically and syntactically similar.

Amir Gilat | Newswise Science News
Further information:
http://www.haifa.ac.il

Further reports about: Areas Brain Language bilingual brain damage language skills second language

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>