Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The biggest loser: Maternal obesity puts a load on her offspring that lasts a lifetime

10.02.2010
Duke researchers report in the FASEB Journal that maternal obesity dramatically increases the risk of diseases related to inflammation gone awry: heart disease, stroke and more

As if there are not enough reasons for obese people to lose weight, a new research report published online in The FASEB Journal, adds several more. In a study involving rats, researchers from Duke University found that obesity in mothers causes cellular programming in utero that predisposes offspring to inflammation-related disorders (such as Alzheimer's, Parkinson's, type 2 diabetes, stroke, heart disease, and more) from the day that they are born, regardless of whether or not the offspring are obese themselves.

"We hope these data will eventually lead to treatments for obesity-associated problems, by the identification of novel targets within the immune system," said Staci D. Bilbo, Ph.D., co-author of the study, from the Department of Psychology and Neuroscience at Duke University in Durham, N.C. "Our hope is also that these data will lead people to consider the consequences of their dietary intakes not only for their own health, but also for their children's health, and potentially even their grandchildren's health."

To make this discovery, Bilbo and colleagues placed rats on one of three diets (low-fat, high-saturated fat, and high-trans fat) four weeks prior to mating and throughout pregnancy and lactation. The high-fat diets rendered the mice clinically obese. Researchers analyzed the brains of the newborn pups after challenge by inflammatory stimuli. Offspring born to mothers on the high-fat diets showed increased immune cell activation and release of injurious products (cytokines). This overshoot was already apparent on the day after birth. When the scientists continued to analyze the pup brains through their juvenile and adult years, and even after the rats were put on healthy low-fat diets, this hyper-response to inflammation remained dramatically increased compared to rats born to normal-weight mothers.

"If there ever was a maternal hex, obesity might be it," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "and as it turns out, even after the weight comes off, the biggest loser isn't a mother, but her child."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information. FASEB is composed of 23 societies with more than 90,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of biomedical and life scientists to improve-through their research-the health, well-being and productivity of all people. Its mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Staci D. Bilbo and Verne Tsang. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. doi:10.1096/fj.09-144014 ; http://www.fasebj.org/cgi/content/abstract/fj.09-144014v1

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org
http://www.fasebj.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>