Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big, Little, Tall and Tiny: Words That Promote Important Spatial Skills

10.11.2011
Research shows learning words about size and shape improve readiness for STEM education

Preschool children who hear parents use words describing the size and shape of objects and who then use those words in their day to day interactions do much better on tests of their spatial skills, a University of Chicago study shows.

The study is the first to demonstrate that learning to use a wide range of words related to shape and size may improve children's later spatial skills, which are important in mathematics, science and technology.

These are skills that physicists and engineers rely on to take an abstract idea, conceptualize it and turn it into a real-world process, action or device, for example.

Researchers found that 1- to 4-year-olds who heard and then spoke 45 additional spatial words that described sizes and shapes saw, on average, a 23 percent increase in their scores on a non-verbal assessment of spatial thinking.

"Our results suggest that children's talk about space early in development is a significant predictor of their later spatial thinking," said University of Chicago psychologist Susan Levine, an author of a paper published on the research in the current issue of Developmental Science.

Shannon Pruden of Florida International University and Janellen Huttenlocher, also of University of Chicago, coauthored the paper with her. A video interview with Levine about this research can be found on the University of Chicago website.

"In view of findings that show spatial thinking is an important predictor of STEM achievement and careers, it is important to explore the kinds of early inputs that are related to the development of thinking in this domain," Levine and colleagues write in the article, "Children's Spatial Thinking: Does Talk about the Spatial World Matter?"

STEM--Science, Technology, Engineering and Mathematics--education is seen as vitally important for the next generation of science and technology innovators in the 21st century. In fact, a 2007 report issued by the National Science Board argues that to succeed in a new information-based and highly technological society, all students need to develop their capabilities in STEM to levels much beyond what was considered acceptable in the past, and enhancing spatial thinking is an important component of achieving this goal.

"This study is important because it will help parents and caregivers to better recognize and to seek opportunities that enhance children's spatial learning," said Soo-Siang Lim, director for the Science of Learning Centers Program at the National Science Foundation, which partially funded the study. "Study results could also help spatial learning play a more purposeful role in children's learning trajectories."

For the study, the research team videotaped children between ages 14 and 46 months and their primary caregivers, who were mainly the children's mothers. Researchers videotaped the caregivers as they interacted with their children in 90 minute sessions at four-month intervals. Caregivers and children were asked to engage in their normal, everyday activities.

The study group included 52 children and 52 parents from an economically and ethnically diverse set of homes in the Chicago area.

The researchers recorded words that were related to spatial concepts used by both children and their parents. They noted the use of names for two and three dimensional objects, such as circle or triangle. They also noted words that described size, such as tall and wide and words descriptive of spatial features such as bent, edge and corner.

The researchers found a great variation in the number of spatial words used by parents. On average parents used 167 words related to spatial concepts, but the range was very wide with parents using from 5 to 525 spatial words.

Among children, there was a similar variability, with children producing an average of 74 spatial related words and using a range of 4 to 191 words during the study period--composed of nine, 90 minute visits. The children who used more spatial terms were more likely to have caregivers who used those terms more often.

Moreover, when the children were four and a half years old, the team tested them for their spatial skills, to see if they could mentally rotate objects, copy block designs or match analogous spatial relations.

The researchers found that the children who were exposed to more spatial terms as part of their everyday activities and learned to produce these words themselves did much better on spatial tests than children who did not hear and produce as many of these terms. Importantly, this was true even controlling for children's overall productive vocabulary.

The impact was biggest for two of the tasks--the spatial analogies task and the mental rotation task. On the spatial analogy task, children, ages four and a half, were shown an array of four pictures and asked to select which picture "goes best" with a target picture--the one that depicted the same spatial relation.

On this nonverbal spatial analogies matching test, for every 45 additional spatial words children produced during their spontaneous talk with their parents, researchers saw a 23 percent increase in scores. Children who produced 45 more spatial words saw a 15 percent increase on a separate test assessing their ability to mentally rotate shapes.

The increased use of spatial language may have prompted the children's attention to the depicted spatial relations and improved their ability to solve spatial problems, the researchers said. The language knowledge may also have reduced the mental load involved in transforming shapes on the mental rotation task, they added.

In addition to NSF's Science of Learning Centers Program award to the Spatial Intelligence and Learning Center, the research was supported by the National Institute of Child Health and Human Development.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
William Harms, University of Chicago 773-702-8356 wharms@uchicago.edu
Program Contacts
Soo-Siang Lim, NSF (703) 292-7878 slim@nsf.gov
Principal Investigators
Susan C. Levine, University of Chicago 773) 702-8844 s-levine@uchicago.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Collaborative Learning Gates Foundation NSF Skill Stem

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>