Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big, Little, Tall and Tiny: Words That Promote Important Spatial Skills

10.11.2011
Research shows learning words about size and shape improve readiness for STEM education

Preschool children who hear parents use words describing the size and shape of objects and who then use those words in their day to day interactions do much better on tests of their spatial skills, a University of Chicago study shows.

The study is the first to demonstrate that learning to use a wide range of words related to shape and size may improve children's later spatial skills, which are important in mathematics, science and technology.

These are skills that physicists and engineers rely on to take an abstract idea, conceptualize it and turn it into a real-world process, action or device, for example.

Researchers found that 1- to 4-year-olds who heard and then spoke 45 additional spatial words that described sizes and shapes saw, on average, a 23 percent increase in their scores on a non-verbal assessment of spatial thinking.

"Our results suggest that children's talk about space early in development is a significant predictor of their later spatial thinking," said University of Chicago psychologist Susan Levine, an author of a paper published on the research in the current issue of Developmental Science.

Shannon Pruden of Florida International University and Janellen Huttenlocher, also of University of Chicago, coauthored the paper with her. A video interview with Levine about this research can be found on the University of Chicago website.

"In view of findings that show spatial thinking is an important predictor of STEM achievement and careers, it is important to explore the kinds of early inputs that are related to the development of thinking in this domain," Levine and colleagues write in the article, "Children's Spatial Thinking: Does Talk about the Spatial World Matter?"

STEM--Science, Technology, Engineering and Mathematics--education is seen as vitally important for the next generation of science and technology innovators in the 21st century. In fact, a 2007 report issued by the National Science Board argues that to succeed in a new information-based and highly technological society, all students need to develop their capabilities in STEM to levels much beyond what was considered acceptable in the past, and enhancing spatial thinking is an important component of achieving this goal.

"This study is important because it will help parents and caregivers to better recognize and to seek opportunities that enhance children's spatial learning," said Soo-Siang Lim, director for the Science of Learning Centers Program at the National Science Foundation, which partially funded the study. "Study results could also help spatial learning play a more purposeful role in children's learning trajectories."

For the study, the research team videotaped children between ages 14 and 46 months and their primary caregivers, who were mainly the children's mothers. Researchers videotaped the caregivers as they interacted with their children in 90 minute sessions at four-month intervals. Caregivers and children were asked to engage in their normal, everyday activities.

The study group included 52 children and 52 parents from an economically and ethnically diverse set of homes in the Chicago area.

The researchers recorded words that were related to spatial concepts used by both children and their parents. They noted the use of names for two and three dimensional objects, such as circle or triangle. They also noted words that described size, such as tall and wide and words descriptive of spatial features such as bent, edge and corner.

The researchers found a great variation in the number of spatial words used by parents. On average parents used 167 words related to spatial concepts, but the range was very wide with parents using from 5 to 525 spatial words.

Among children, there was a similar variability, with children producing an average of 74 spatial related words and using a range of 4 to 191 words during the study period--composed of nine, 90 minute visits. The children who used more spatial terms were more likely to have caregivers who used those terms more often.

Moreover, when the children were four and a half years old, the team tested them for their spatial skills, to see if they could mentally rotate objects, copy block designs or match analogous spatial relations.

The researchers found that the children who were exposed to more spatial terms as part of their everyday activities and learned to produce these words themselves did much better on spatial tests than children who did not hear and produce as many of these terms. Importantly, this was true even controlling for children's overall productive vocabulary.

The impact was biggest for two of the tasks--the spatial analogies task and the mental rotation task. On the spatial analogy task, children, ages four and a half, were shown an array of four pictures and asked to select which picture "goes best" with a target picture--the one that depicted the same spatial relation.

On this nonverbal spatial analogies matching test, for every 45 additional spatial words children produced during their spontaneous talk with their parents, researchers saw a 23 percent increase in scores. Children who produced 45 more spatial words saw a 15 percent increase on a separate test assessing their ability to mentally rotate shapes.

The increased use of spatial language may have prompted the children's attention to the depicted spatial relations and improved their ability to solve spatial problems, the researchers said. The language knowledge may also have reduced the mental load involved in transforming shapes on the mental rotation task, they added.

In addition to NSF's Science of Learning Centers Program award to the Spatial Intelligence and Learning Center, the research was supported by the National Institute of Child Health and Human Development.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
William Harms, University of Chicago 773-702-8356 wharms@uchicago.edu
Program Contacts
Soo-Siang Lim, NSF (703) 292-7878 slim@nsf.gov
Principal Investigators
Susan C. Levine, University of Chicago 773) 702-8844 s-levine@uchicago.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: Collaborative Learning Gates Foundation NSF Skill Stem

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>